Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrmulc1cn Structured version   Visualization version   GIF version

Theorem xrmulc1cn 33897
Description: The operation multiplying an extended real number by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
xrmulc1cn.k 𝐽 = (ordTop‘ ≤ )
xrmulc1cn.f 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶))
xrmulc1cn.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
xrmulc1cn (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrmulc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 letsr 18499 . . . 4 ≤ ∈ TosetRel
21a1i 11 . . 3 (𝜑 → ≤ ∈ TosetRel )
3 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
4 xrmulc1cn.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
54adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ+)
65rpxrd 12938 . . . . . . 7 ((𝜑𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ*)
73, 6xmulcld 13204 . . . . . 6 ((𝜑𝑥 ∈ ℝ*) → (𝑥 ·e 𝐶) ∈ ℝ*)
87ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ* (𝑥 ·e 𝐶) ∈ ℝ*)
9 simpr 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
104adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ+)
1110rpred 12937 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ)
1210rpne0d 12942 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ≠ 0)
13 xreceu 32862 . . . . . . . 8 ((𝑦 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦)
149, 11, 12, 13syl3anc 1373 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦)
15 eqcom 2736 . . . . . . . . 9 (𝑦 = (𝑥 ·e 𝐶) ↔ (𝑥 ·e 𝐶) = 𝑦)
16 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
176adantlr 715 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ*)
18 xmulcom 13168 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
1916, 17, 18syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
2019eqeq1d 2731 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝑥 ·e 𝐶) = 𝑦 ↔ (𝐶 ·e 𝑥) = 𝑦))
2115, 20bitrid 283 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑦 = (𝑥 ·e 𝐶) ↔ (𝐶 ·e 𝑥) = 𝑦))
2221reubidva 3359 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶) ↔ ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦))
2314, 22mpbird 257 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶))
2423ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑦 ∈ ℝ* ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶))
25 xrmulc1cn.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶))
2625f1ompt 7045 . . . . 5 (𝐹:ℝ*1-1-onto→ℝ* ↔ (∀𝑥 ∈ ℝ* (𝑥 ·e 𝐶) ∈ ℝ* ∧ ∀𝑦 ∈ ℝ* ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶)))
278, 24, 26sylanbrc 583 . . . 4 (𝜑𝐹:ℝ*1-1-onto→ℝ*)
28 simplr 768 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
29 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
304ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ+)
31 xlemul1 13192 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝐶 ∈ ℝ+) → (𝑥𝑦 ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
3228, 29, 30, 31syl3anc 1373 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
33 ovex 7382 . . . . . . . . 9 (𝑥 ·e 𝐶) ∈ V
3425fvmpt2 6941 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥 ·e 𝐶) ∈ V) → (𝐹𝑥) = (𝑥 ·e 𝐶))
3528, 33, 34sylancl 586 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝐹𝑥) = (𝑥 ·e 𝐶))
36 oveq1 7356 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ·e 𝐶) = (𝑦 ·e 𝐶))
37 ovex 7382 . . . . . . . . . 10 (𝑦 ·e 𝐶) ∈ V
3836, 25, 37fvmpt 6930 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝐹𝑦) = (𝑦 ·e 𝐶))
3938adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝐹𝑦) = (𝑦 ·e 𝐶))
4035, 39breq12d 5105 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
4132, 40bitr4d 282 . . . . . 6 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
4241ralrimiva 3121 . . . . 5 ((𝜑𝑥 ∈ ℝ*) → ∀𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
4342ralrimiva 3121 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
44 df-isom 6491 . . . 4 (𝐹 Isom ≤ , ≤ (ℝ*, ℝ*) ↔ (𝐹:ℝ*1-1-onto→ℝ* ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦))))
4527, 43, 44sylanbrc 583 . . 3 (𝜑𝐹 Isom ≤ , ≤ (ℝ*, ℝ*))
46 ledm 18496 . . . 4 * = dom ≤
4746, 46ordthmeolem 23686 . . 3 (( ≤ ∈ TosetRel ∧ ≤ ∈ TosetRel ∧ 𝐹 Isom ≤ , ≤ (ℝ*, ℝ*)) → 𝐹 ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
482, 2, 45, 47syl3anc 1373 . 2 (𝜑𝐹 ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
49 xrmulc1cn.k . . 3 𝐽 = (ordTop‘ ≤ )
5049, 49oveq12i 7361 . 2 (𝐽 Cn 𝐽) = ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ ))
5148, 50eleqtrrdi 2839 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  ∃!wreu 3341  Vcvv 3436   class class class wbr 5092  cmpt 5173  1-1-ontowf1o 6481  cfv 6482   Isom wiso 6483  (class class class)co 7349  cr 11008  0cc0 11009  *cxr 11148  cle 11150  +crp 12893   ·e cxmu 13013  ordTopcordt 17403   TosetRel ctsr 18471   Cn ccn 23109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-rp 12894  df-xneg 13014  df-xmul 13016  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-top 22779  df-topon 22796  df-bases 22831  df-cn 23112
This theorem is referenced by:  xrge0mulc1cn  33908
  Copyright terms: Public domain W3C validator