Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrmulc1cn Structured version   Visualization version   GIF version

Theorem xrmulc1cn 31880
Description: The operation multiplying an extended real number by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
xrmulc1cn.k 𝐽 = (ordTop‘ ≤ )
xrmulc1cn.f 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶))
xrmulc1cn.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
xrmulc1cn (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrmulc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 letsr 18311 . . . 4 ≤ ∈ TosetRel
21a1i 11 . . 3 (𝜑 → ≤ ∈ TosetRel )
3 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
4 xrmulc1cn.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
54adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ+)
65rpxrd 12773 . . . . . . 7 ((𝜑𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ*)
73, 6xmulcld 13036 . . . . . 6 ((𝜑𝑥 ∈ ℝ*) → (𝑥 ·e 𝐶) ∈ ℝ*)
87ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ* (𝑥 ·e 𝐶) ∈ ℝ*)
9 simpr 485 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
104adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ+)
1110rpred 12772 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ)
1210rpne0d 12777 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ≠ 0)
13 xreceu 31196 . . . . . . . 8 ((𝑦 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦)
149, 11, 12, 13syl3anc 1370 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦)
15 eqcom 2745 . . . . . . . . 9 (𝑦 = (𝑥 ·e 𝐶) ↔ (𝑥 ·e 𝐶) = 𝑦)
16 simpr 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
176adantlr 712 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ*)
18 xmulcom 13000 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
1916, 17, 18syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
2019eqeq1d 2740 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝑥 ·e 𝐶) = 𝑦 ↔ (𝐶 ·e 𝑥) = 𝑦))
2115, 20syl5bb 283 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑦 = (𝑥 ·e 𝐶) ↔ (𝐶 ·e 𝑥) = 𝑦))
2221reubidva 3322 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶) ↔ ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦))
2314, 22mpbird 256 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶))
2423ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑦 ∈ ℝ* ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶))
25 xrmulc1cn.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶))
2625f1ompt 6985 . . . . 5 (𝐹:ℝ*1-1-onto→ℝ* ↔ (∀𝑥 ∈ ℝ* (𝑥 ·e 𝐶) ∈ ℝ* ∧ ∀𝑦 ∈ ℝ* ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶)))
278, 24, 26sylanbrc 583 . . . 4 (𝜑𝐹:ℝ*1-1-onto→ℝ*)
28 simplr 766 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
29 simpr 485 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
304ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ+)
31 xlemul1 13024 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝐶 ∈ ℝ+) → (𝑥𝑦 ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
3228, 29, 30, 31syl3anc 1370 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
33 ovex 7308 . . . . . . . . 9 (𝑥 ·e 𝐶) ∈ V
3425fvmpt2 6886 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥 ·e 𝐶) ∈ V) → (𝐹𝑥) = (𝑥 ·e 𝐶))
3528, 33, 34sylancl 586 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝐹𝑥) = (𝑥 ·e 𝐶))
36 oveq1 7282 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ·e 𝐶) = (𝑦 ·e 𝐶))
37 ovex 7308 . . . . . . . . . 10 (𝑦 ·e 𝐶) ∈ V
3836, 25, 37fvmpt 6875 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝐹𝑦) = (𝑦 ·e 𝐶))
3938adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝐹𝑦) = (𝑦 ·e 𝐶))
4035, 39breq12d 5087 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
4132, 40bitr4d 281 . . . . . 6 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
4241ralrimiva 3103 . . . . 5 ((𝜑𝑥 ∈ ℝ*) → ∀𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
4342ralrimiva 3103 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
44 df-isom 6442 . . . 4 (𝐹 Isom ≤ , ≤ (ℝ*, ℝ*) ↔ (𝐹:ℝ*1-1-onto→ℝ* ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦))))
4527, 43, 44sylanbrc 583 . . 3 (𝜑𝐹 Isom ≤ , ≤ (ℝ*, ℝ*))
46 ledm 18308 . . . 4 * = dom ≤
4746, 46ordthmeolem 22952 . . 3 (( ≤ ∈ TosetRel ∧ ≤ ∈ TosetRel ∧ 𝐹 Isom ≤ , ≤ (ℝ*, ℝ*)) → 𝐹 ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
482, 2, 45, 47syl3anc 1370 . 2 (𝜑𝐹 ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
49 xrmulc1cn.k . . 3 𝐽 = (ordTop‘ ≤ )
5049, 49oveq12i 7287 . 2 (𝐽 Cn 𝐽) = ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ ))
5148, 50eleqtrrdi 2850 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  ∃!wreu 3066  Vcvv 3432   class class class wbr 5074  cmpt 5157  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434  (class class class)co 7275  cr 10870  0cc0 10871  *cxr 11008  cle 11010  +crp 12730   ·e cxmu 12847  ordTopcordt 17210   TosetRel ctsr 18283   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-rp 12731  df-xneg 12848  df-xmul 12850  df-topgen 17154  df-ordt 17212  df-ps 18284  df-tsr 18285  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378
This theorem is referenced by:  xrge0mulc1cn  31891
  Copyright terms: Public domain W3C validator