Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrmulc1cn Structured version   Visualization version   GIF version

Theorem xrmulc1cn 31168
Description: The operation multiplying an extended real number by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
xrmulc1cn.k 𝐽 = (ordTop‘ ≤ )
xrmulc1cn.f 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶))
xrmulc1cn.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
xrmulc1cn (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrmulc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 letsr 17831 . . . 4 ≤ ∈ TosetRel
21a1i 11 . . 3 (𝜑 → ≤ ∈ TosetRel )
3 simpr 487 . . . . . . 7 ((𝜑𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
4 xrmulc1cn.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
54adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ+)
65rpxrd 12426 . . . . . . 7 ((𝜑𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ*)
73, 6xmulcld 12689 . . . . . 6 ((𝜑𝑥 ∈ ℝ*) → (𝑥 ·e 𝐶) ∈ ℝ*)
87ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ* (𝑥 ·e 𝐶) ∈ ℝ*)
9 simpr 487 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
104adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ+)
1110rpred 12425 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ)
1210rpne0d 12430 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ≠ 0)
13 xreceu 30593 . . . . . . . 8 ((𝑦 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦)
149, 11, 12, 13syl3anc 1367 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦)
15 eqcom 2828 . . . . . . . . 9 (𝑦 = (𝑥 ·e 𝐶) ↔ (𝑥 ·e 𝐶) = 𝑦)
16 simpr 487 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
176adantlr 713 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ*)
18 xmulcom 12653 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
1916, 17, 18syl2anc 586 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
2019eqeq1d 2823 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝑥 ·e 𝐶) = 𝑦 ↔ (𝐶 ·e 𝑥) = 𝑦))
2115, 20syl5bb 285 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑦 = (𝑥 ·e 𝐶) ↔ (𝐶 ·e 𝑥) = 𝑦))
2221reubidva 3389 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶) ↔ ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦))
2314, 22mpbird 259 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶))
2423ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑦 ∈ ℝ* ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶))
25 xrmulc1cn.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶))
2625f1ompt 6870 . . . . 5 (𝐹:ℝ*1-1-onto→ℝ* ↔ (∀𝑥 ∈ ℝ* (𝑥 ·e 𝐶) ∈ ℝ* ∧ ∀𝑦 ∈ ℝ* ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶)))
278, 24, 26sylanbrc 585 . . . 4 (𝜑𝐹:ℝ*1-1-onto→ℝ*)
28 simplr 767 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
29 simpr 487 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
304ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ+)
31 xlemul1 12677 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝐶 ∈ ℝ+) → (𝑥𝑦 ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
3228, 29, 30, 31syl3anc 1367 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
33 ovex 7183 . . . . . . . . 9 (𝑥 ·e 𝐶) ∈ V
3425fvmpt2 6774 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥 ·e 𝐶) ∈ V) → (𝐹𝑥) = (𝑥 ·e 𝐶))
3528, 33, 34sylancl 588 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝐹𝑥) = (𝑥 ·e 𝐶))
36 oveq1 7157 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ·e 𝐶) = (𝑦 ·e 𝐶))
37 ovex 7183 . . . . . . . . . 10 (𝑦 ·e 𝐶) ∈ V
3836, 25, 37fvmpt 6763 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝐹𝑦) = (𝑦 ·e 𝐶))
3938adantl 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝐹𝑦) = (𝑦 ·e 𝐶))
4035, 39breq12d 5072 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
4132, 40bitr4d 284 . . . . . 6 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
4241ralrimiva 3182 . . . . 5 ((𝜑𝑥 ∈ ℝ*) → ∀𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
4342ralrimiva 3182 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
44 df-isom 6359 . . . 4 (𝐹 Isom ≤ , ≤ (ℝ*, ℝ*) ↔ (𝐹:ℝ*1-1-onto→ℝ* ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦))))
4527, 43, 44sylanbrc 585 . . 3 (𝜑𝐹 Isom ≤ , ≤ (ℝ*, ℝ*))
46 ledm 17828 . . . 4 * = dom ≤
4746, 46ordthmeolem 22403 . . 3 (( ≤ ∈ TosetRel ∧ ≤ ∈ TosetRel ∧ 𝐹 Isom ≤ , ≤ (ℝ*, ℝ*)) → 𝐹 ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
482, 2, 45, 47syl3anc 1367 . 2 (𝜑𝐹 ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
49 xrmulc1cn.k . . 3 𝐽 = (ordTop‘ ≤ )
5049, 49oveq12i 7162 . 2 (𝐽 Cn 𝐽) = ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ ))
5148, 50eleqtrrdi 2924 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  ∃!wreu 3140  Vcvv 3495   class class class wbr 5059  cmpt 5139  1-1-ontowf1o 6349  cfv 6350   Isom wiso 6351  (class class class)co 7150  cr 10530  0cc0 10531  *cxr 10668  cle 10670  +crp 12383   ·e cxmu 12500  ordTopcordt 16766   TosetRel ctsr 17803   Cn ccn 21826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-rp 12384  df-xneg 12501  df-xmul 12503  df-topgen 16711  df-ordt 16768  df-ps 17804  df-tsr 17805  df-top 21496  df-topon 21513  df-bases 21548  df-cn 21829
This theorem is referenced by:  xrge0mulc1cn  31179
  Copyright terms: Public domain W3C validator