MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoiso2 Structured version   Visualization version   GIF version

Theorem smoiso2 8425
Description: The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
smoiso2 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵)))

Proof of Theorem smoiso2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6834 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 smo11 8420 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1𝐵)
31, 2sylan 579 . . . . . 6 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1𝐵)
4 simpl 482 . . . . . 6 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴onto𝐵)
5 df-f1o 6580 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
63, 4, 5sylanbrc 582 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1-onto𝐵)
76adantl 481 . . . 4 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → 𝐹:𝐴1-1-onto𝐵)
8 fofn 6836 . . . . . 6 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
9 smoord 8421 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
10 epel 5602 . . . . . . . 8 (𝑥 E 𝑦𝑥𝑦)
11 fvex 6933 . . . . . . . . 9 (𝐹𝑦) ∈ V
1211epeli 5601 . . . . . . . 8 ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦))
139, 10, 123bitr4g 314 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
1413ralrimivva 3208 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
158, 14sylan 579 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
1615adantl 481 . . . 4 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
17 df-isom 6582 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) ↔ (𝐹:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦))))
187, 16, 17sylanbrc 582 . . 3 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → 𝐹 Isom E , E (𝐴, 𝐵))
1918ex 412 . 2 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹 Isom E , E (𝐴, 𝐵)))
20 isof1o 7359 . . . . . . 7 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
21 f1ofo 6869 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2220, 21syl 17 . . . . . 6 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴onto𝐵)
23223ad2ant1 1133 . . . . 5 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:𝐴onto𝐵)
24 smoiso 8418 . . . . 5 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)
2523, 24jca 511 . . . 4 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹))
26253expib 1122 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → ((Ord 𝐴𝐵 ⊆ On) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)))
2726com12 32 . 2 ((Ord 𝐴𝐵 ⊆ On) → (𝐹 Isom E , E (𝐴, 𝐵) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)))
2819, 27impbid 212 1 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wral 3067  wss 3976   class class class wbr 5166   E cep 5598  Ord word 6394  Oncon0 6395   Fn wfn 6568  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573   Isom wiso 6574  Smo wsmo 8401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-ord 6398  df-on 6399  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-smo 8402
This theorem is referenced by:  oismo  9609  cofsmo  10338
  Copyright terms: Public domain W3C validator