MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoiso2 Structured version   Visualization version   GIF version

Theorem smoiso2 7705
Description: The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
smoiso2 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵)))

Proof of Theorem smoiso2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6331 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 smo11 7700 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1𝐵)
31, 2sylan 576 . . . . . 6 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1𝐵)
4 simpl 475 . . . . . 6 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴onto𝐵)
5 df-f1o 6108 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
63, 4, 5sylanbrc 579 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1-onto𝐵)
76adantl 474 . . . 4 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → 𝐹:𝐴1-1-onto𝐵)
8 fofn 6333 . . . . . 6 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
9 smoord 7701 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
10 epel 5228 . . . . . . . 8 (𝑥 E 𝑦𝑥𝑦)
11 fvex 6424 . . . . . . . . 9 (𝐹𝑦) ∈ V
1211epeli 5227 . . . . . . . 8 ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦))
139, 10, 123bitr4g 306 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
1413ralrimivva 3152 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
158, 14sylan 576 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
1615adantl 474 . . . 4 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
17 df-isom 6110 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) ↔ (𝐹:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦))))
187, 16, 17sylanbrc 579 . . 3 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → 𝐹 Isom E , E (𝐴, 𝐵))
1918ex 402 . 2 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹 Isom E , E (𝐴, 𝐵)))
20 isof1o 6801 . . . . . . 7 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
21 f1ofo 6363 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2220, 21syl 17 . . . . . 6 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴onto𝐵)
23223ad2ant1 1164 . . . . 5 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:𝐴onto𝐵)
24 smoiso 7698 . . . . 5 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)
2523, 24jca 508 . . . 4 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹))
26253expib 1153 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → ((Ord 𝐴𝐵 ⊆ On) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)))
2726com12 32 . 2 ((Ord 𝐴𝐵 ⊆ On) → (𝐹 Isom E , E (𝐴, 𝐵) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)))
2819, 27impbid 204 1 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108  wcel 2157  wral 3089  wss 3769   class class class wbr 4843   E cep 5224  Ord word 5940  Oncon0 5941   Fn wfn 6096  wf 6097  1-1wf1 6098  ontowfo 6099  1-1-ontowf1o 6100  cfv 6101   Isom wiso 6102  Smo wsmo 7681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-ord 5944  df-on 5945  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-smo 7682
This theorem is referenced by:  oismo  8687  cofsmo  9379
  Copyright terms: Public domain W3C validator