MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoiso2 Structured version   Visualization version   GIF version

Theorem smoiso2 8341
Description: The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
smoiso2 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵)))

Proof of Theorem smoiso2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6775 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 smo11 8336 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1𝐵)
31, 2sylan 580 . . . . . 6 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1𝐵)
4 simpl 482 . . . . . 6 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴onto𝐵)
5 df-f1o 6521 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
63, 4, 5sylanbrc 583 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1-onto𝐵)
76adantl 481 . . . 4 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → 𝐹:𝐴1-1-onto𝐵)
8 fofn 6777 . . . . . 6 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
9 smoord 8337 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
10 epel 5544 . . . . . . . 8 (𝑥 E 𝑦𝑥𝑦)
11 fvex 6874 . . . . . . . . 9 (𝐹𝑦) ∈ V
1211epeli 5543 . . . . . . . 8 ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦))
139, 10, 123bitr4g 314 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
1413ralrimivva 3181 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
158, 14sylan 580 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
1615adantl 481 . . . 4 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
17 df-isom 6523 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) ↔ (𝐹:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦))))
187, 16, 17sylanbrc 583 . . 3 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → 𝐹 Isom E , E (𝐴, 𝐵))
1918ex 412 . 2 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹 Isom E , E (𝐴, 𝐵)))
20 isof1o 7301 . . . . . . 7 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
21 f1ofo 6810 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2220, 21syl 17 . . . . . 6 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴onto𝐵)
23223ad2ant1 1133 . . . . 5 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:𝐴onto𝐵)
24 smoiso 8334 . . . . 5 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)
2523, 24jca 511 . . . 4 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹))
26253expib 1122 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → ((Ord 𝐴𝐵 ⊆ On) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)))
2726com12 32 . 2 ((Ord 𝐴𝐵 ⊆ On) → (𝐹 Isom E , E (𝐴, 𝐵) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)))
2819, 27impbid 212 1 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3045  wss 3917   class class class wbr 5110   E cep 5540  Ord word 6334  Oncon0 6335   Fn wfn 6509  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514   Isom wiso 6515  Smo wsmo 8317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-ord 6338  df-on 6339  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-smo 8318
This theorem is referenced by:  oismo  9500  cofsmo  10229
  Copyright terms: Public domain W3C validator