Step | Hyp | Ref
| Expression |
1 | | simpl 484 |
. . . 4
⊢ ((𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤))) → 𝐺:𝐵–1-1-onto→𝐶) |
2 | | simpl 484 |
. . . 4
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → 𝐻:𝐴–1-1-onto→𝐵) |
3 | | f1oco 6765 |
. . . 4
⊢ ((𝐺:𝐵–1-1-onto→𝐶 ∧ 𝐻:𝐴–1-1-onto→𝐵) → (𝐺 ∘ 𝐻):𝐴–1-1-onto→𝐶) |
4 | 1, 2, 3 | syl2anr 598 |
. . 3
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) → (𝐺 ∘ 𝐻):𝐴–1-1-onto→𝐶) |
5 | | f1of 6742 |
. . . . . . . . . . . 12
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) |
6 | 5 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐻:𝐴⟶𝐵) |
7 | | simprl 769 |
. . . . . . . . . . 11
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
8 | 6, 7 | ffvelcdmd 6990 |
. . . . . . . . . 10
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑥) ∈ 𝐵) |
9 | | simprr 771 |
. . . . . . . . . . 11
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
10 | 6, 9 | ffvelcdmd 6990 |
. . . . . . . . . 10
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑦) ∈ 𝐵) |
11 | | simplrr 776 |
. . . . . . . . . 10
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤))) |
12 | | breq1 5084 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐻‘𝑥) → (𝑧𝑆𝑤 ↔ (𝐻‘𝑥)𝑆𝑤)) |
13 | | fveq2 6800 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐻‘𝑥) → (𝐺‘𝑧) = (𝐺‘(𝐻‘𝑥))) |
14 | 13 | breq1d 5091 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐻‘𝑥) → ((𝐺‘𝑧)𝑇(𝐺‘𝑤) ↔ (𝐺‘(𝐻‘𝑥))𝑇(𝐺‘𝑤))) |
15 | 12, 14 | bibi12d 347 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐻‘𝑥) → ((𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)) ↔ ((𝐻‘𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻‘𝑥))𝑇(𝐺‘𝑤)))) |
16 | | breq2 5085 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐻‘𝑦) → ((𝐻‘𝑥)𝑆𝑤 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
17 | | fveq2 6800 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐻‘𝑦) → (𝐺‘𝑤) = (𝐺‘(𝐻‘𝑦))) |
18 | 17 | breq2d 5093 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐻‘𝑦) → ((𝐺‘(𝐻‘𝑥))𝑇(𝐺‘𝑤) ↔ (𝐺‘(𝐻‘𝑥))𝑇(𝐺‘(𝐻‘𝑦)))) |
19 | 16, 18 | bibi12d 347 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐻‘𝑦) → (((𝐻‘𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻‘𝑥))𝑇(𝐺‘𝑤)) ↔ ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐺‘(𝐻‘𝑥))𝑇(𝐺‘(𝐻‘𝑦))))) |
20 | 15, 19 | rspc2va 3576 |
. . . . . . . . . 10
⊢ ((((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐻‘𝑦) ∈ 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤))) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐺‘(𝐻‘𝑥))𝑇(𝐺‘(𝐻‘𝑦)))) |
21 | 8, 10, 11, 20 | syl21anc 836 |
. . . . . . . . 9
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐺‘(𝐻‘𝑥))𝑇(𝐺‘(𝐻‘𝑦)))) |
22 | | fvco3 6895 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐻)‘𝑥) = (𝐺‘(𝐻‘𝑥))) |
23 | 6, 7, 22 | syl2anc 585 |
. . . . . . . . . 10
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐺 ∘ 𝐻)‘𝑥) = (𝐺‘(𝐻‘𝑥))) |
24 | | fvco3 6895 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → ((𝐺 ∘ 𝐻)‘𝑦) = (𝐺‘(𝐻‘𝑦))) |
25 | 6, 9, 24 | syl2anc 585 |
. . . . . . . . . 10
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐺 ∘ 𝐻)‘𝑦) = (𝐺‘(𝐻‘𝑦))) |
26 | 23, 25 | breq12d 5094 |
. . . . . . . . 9
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐺 ∘ 𝐻)‘𝑥)𝑇((𝐺 ∘ 𝐻)‘𝑦) ↔ (𝐺‘(𝐻‘𝑥))𝑇(𝐺‘(𝐻‘𝑦)))) |
27 | 21, 26 | bitr4d 283 |
. . . . . . . 8
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ ((𝐺 ∘ 𝐻)‘𝑥)𝑇((𝐺 ∘ 𝐻)‘𝑦))) |
28 | 27 | bibi2d 344 |
. . . . . . 7
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ ((𝐺 ∘ 𝐻)‘𝑥)𝑇((𝐺 ∘ 𝐻)‘𝑦)))) |
29 | 28 | 2ralbidva 3207 |
. . . . . 6
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ ((𝐺 ∘ 𝐻)‘𝑥)𝑇((𝐺 ∘ 𝐻)‘𝑦)))) |
30 | 29 | biimpd 228 |
. . . . 5
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ ((𝐺 ∘ 𝐻)‘𝑥)𝑇((𝐺 ∘ 𝐻)‘𝑦)))) |
31 | 30 | impancom 453 |
. . . 4
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → ((𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ ((𝐺 ∘ 𝐻)‘𝑥)𝑇((𝐺 ∘ 𝐻)‘𝑦)))) |
32 | 31 | imp 408 |
. . 3
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ ((𝐺 ∘ 𝐻)‘𝑥)𝑇((𝐺 ∘ 𝐻)‘𝑦))) |
33 | 4, 32 | jca 513 |
. 2
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) → ((𝐺 ∘ 𝐻):𝐴–1-1-onto→𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ ((𝐺 ∘ 𝐻)‘𝑥)𝑇((𝐺 ∘ 𝐻)‘𝑦)))) |
34 | | df-isom 6463 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
35 | | df-isom 6463 |
. . 3
⊢ (𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶) ↔ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤)))) |
36 | 34, 35 | anbi12i 628 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) ↔ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ∧ (𝐺:𝐵–1-1-onto→𝐶 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (𝐺‘𝑧)𝑇(𝐺‘𝑤))))) |
37 | | df-isom 6463 |
. 2
⊢ ((𝐺 ∘ 𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶) ↔ ((𝐺 ∘ 𝐻):𝐴–1-1-onto→𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ ((𝐺 ∘ 𝐻)‘𝑥)𝑇((𝐺 ∘ 𝐻)‘𝑦)))) |
38 | 33, 36, 37 | 3imtr4i 293 |
1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺 ∘ 𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶)) |