MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isotr Structured version   Visualization version   GIF version

Theorem isotr 6814
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
isotr ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))

Proof of Theorem isotr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 475 . . . 4 ((𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → 𝐺:𝐵1-1-onto𝐶)
2 simpl 475 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → 𝐻:𝐴1-1-onto𝐵)
3 f1oco 6378 . . . 4 ((𝐺:𝐵1-1-onto𝐶𝐻:𝐴1-1-onto𝐵) → (𝐺𝐻):𝐴1-1-onto𝐶)
41, 2, 3syl2anr 591 . . 3 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (𝐺𝐻):𝐴1-1-onto𝐶)
5 f1of 6356 . . . . . . . . . . . 12 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
65ad2antrr 718 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝐻:𝐴𝐵)
7 simprl 788 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
86, 7ffvelrnd 6586 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥) ∈ 𝐵)
9 simprr 790 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
106, 9ffvelrnd 6586 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑦) ∈ 𝐵)
11 simplrr 797 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))
12 breq1 4846 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → (𝑧𝑆𝑤 ↔ (𝐻𝑥)𝑆𝑤))
13 fveq2 6411 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑥) → (𝐺𝑧) = (𝐺‘(𝐻𝑥)))
1413breq1d 4853 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → ((𝐺𝑧)𝑇(𝐺𝑤) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤)))
1512, 14bibi12d 337 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → ((𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)) ↔ ((𝐻𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤))))
16 breq2 4847 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → ((𝐻𝑥)𝑆𝑤 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
17 fveq2 6411 . . . . . . . . . . . . 13 (𝑤 = (𝐻𝑦) → (𝐺𝑤) = (𝐺‘(𝐻𝑦)))
1817breq2d 4855 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → ((𝐺‘(𝐻𝑥))𝑇(𝐺𝑤) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
1916, 18bibi12d 337 . . . . . . . . . . 11 (𝑤 = (𝐻𝑦) → (((𝐻𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤)) ↔ ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦)))))
2015, 19rspc2va 3511 . . . . . . . . . 10 ((((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
218, 10, 11, 20syl21anc 867 . . . . . . . . 9 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
22 fvco3 6500 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝑥𝐴) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
236, 7, 22syl2anc 580 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
24 fvco3 6500 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝑦𝐴) → ((𝐺𝐻)‘𝑦) = (𝐺‘(𝐻𝑦)))
256, 9, 24syl2anc 580 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝐻)‘𝑦) = (𝐺‘(𝐻𝑦)))
2623, 25breq12d 4856 . . . . . . . . 9 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
2721, 26bitr4d 274 . . . . . . . 8 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦)))
2827bibi2d 334 . . . . . . 7 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
29282ralbidva 3169 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3029biimpd 221 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3130impancom 444 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3231imp 396 . . 3 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦)))
334, 32jca 508 . 2 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → ((𝐺𝐻):𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
34 df-isom 6110 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
35 df-isom 6110 . . 3 (𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶) ↔ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))))
3634, 35anbi12i 621 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) ↔ ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))))
37 df-isom 6110 . 2 ((𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶) ↔ ((𝐺𝐻):𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3833, 36, 373imtr4i 284 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089   class class class wbr 4843  ccom 5316  wf 6097  1-1-ontowf1o 6100  cfv 6101   Isom wiso 6102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110
This theorem is referenced by:  weisoeq  6833  oieu  8686  fz1isolem  13494  erdsze2lem2  31703  fzisoeu  40259
  Copyright terms: Public domain W3C validator