MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isotr Structured version   Visualization version   GIF version

Theorem isotr 7270
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
isotr ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))

Proof of Theorem isotr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → 𝐺:𝐵1-1-onto𝐶)
2 simpl 482 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → 𝐻:𝐴1-1-onto𝐵)
3 f1oco 6786 . . . 4 ((𝐺:𝐵1-1-onto𝐶𝐻:𝐴1-1-onto𝐵) → (𝐺𝐻):𝐴1-1-onto𝐶)
41, 2, 3syl2anr 597 . . 3 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (𝐺𝐻):𝐴1-1-onto𝐶)
5 f1of 6763 . . . . . . . . . . . 12 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
65ad2antrr 726 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝐻:𝐴𝐵)
7 simprl 770 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
86, 7ffvelcdmd 7018 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥) ∈ 𝐵)
9 simprr 772 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
106, 9ffvelcdmd 7018 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑦) ∈ 𝐵)
11 simplrr 777 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))
12 breq1 5094 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → (𝑧𝑆𝑤 ↔ (𝐻𝑥)𝑆𝑤))
13 fveq2 6822 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑥) → (𝐺𝑧) = (𝐺‘(𝐻𝑥)))
1413breq1d 5101 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → ((𝐺𝑧)𝑇(𝐺𝑤) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤)))
1512, 14bibi12d 345 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → ((𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)) ↔ ((𝐻𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤))))
16 breq2 5095 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → ((𝐻𝑥)𝑆𝑤 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
17 fveq2 6822 . . . . . . . . . . . . 13 (𝑤 = (𝐻𝑦) → (𝐺𝑤) = (𝐺‘(𝐻𝑦)))
1817breq2d 5103 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → ((𝐺‘(𝐻𝑥))𝑇(𝐺𝑤) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
1916, 18bibi12d 345 . . . . . . . . . . 11 (𝑤 = (𝐻𝑦) → (((𝐻𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤)) ↔ ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦)))))
2015, 19rspc2va 3589 . . . . . . . . . 10 ((((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
218, 10, 11, 20syl21anc 837 . . . . . . . . 9 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
22 fvco3 6921 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝑥𝐴) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
236, 7, 22syl2anc 584 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
24 fvco3 6921 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝑦𝐴) → ((𝐺𝐻)‘𝑦) = (𝐺‘(𝐻𝑦)))
256, 9, 24syl2anc 584 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝐻)‘𝑦) = (𝐺‘(𝐻𝑦)))
2623, 25breq12d 5104 . . . . . . . . 9 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
2721, 26bitr4d 282 . . . . . . . 8 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦)))
2827bibi2d 342 . . . . . . 7 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
29282ralbidva 3194 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3029biimpd 229 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3130impancom 451 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3231imp 406 . . 3 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦)))
334, 32jca 511 . 2 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → ((𝐺𝐻):𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
34 df-isom 6490 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
35 df-isom 6490 . . 3 (𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶) ↔ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))))
3634, 35anbi12i 628 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) ↔ ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))))
37 df-isom 6490 . 2 ((𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶) ↔ ((𝐺𝐻):𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3833, 36, 373imtr4i 292 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5091  ccom 5620  wf 6477  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490
This theorem is referenced by:  weisoeq  7289  oieu  9425  fz1isolem  14365  erdsze2lem2  35236  fzisoeu  45340
  Copyright terms: Public domain W3C validator