MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isotr Structured version   Visualization version   GIF version

Theorem isotr 7081
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
isotr ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))

Proof of Theorem isotr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . 4 ((𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → 𝐺:𝐵1-1-onto𝐶)
2 simpl 483 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → 𝐻:𝐴1-1-onto𝐵)
3 f1oco 6634 . . . 4 ((𝐺:𝐵1-1-onto𝐶𝐻:𝐴1-1-onto𝐵) → (𝐺𝐻):𝐴1-1-onto𝐶)
41, 2, 3syl2anr 596 . . 3 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (𝐺𝐻):𝐴1-1-onto𝐶)
5 f1of 6612 . . . . . . . . . . . 12 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
65ad2antrr 722 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝐻:𝐴𝐵)
7 simprl 767 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
86, 7ffvelrnd 6848 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥) ∈ 𝐵)
9 simprr 769 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
106, 9ffvelrnd 6848 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑦) ∈ 𝐵)
11 simplrr 774 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))
12 breq1 5066 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → (𝑧𝑆𝑤 ↔ (𝐻𝑥)𝑆𝑤))
13 fveq2 6667 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑥) → (𝐺𝑧) = (𝐺‘(𝐻𝑥)))
1413breq1d 5073 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → ((𝐺𝑧)𝑇(𝐺𝑤) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤)))
1512, 14bibi12d 347 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → ((𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)) ↔ ((𝐻𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤))))
16 breq2 5067 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → ((𝐻𝑥)𝑆𝑤 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
17 fveq2 6667 . . . . . . . . . . . . 13 (𝑤 = (𝐻𝑦) → (𝐺𝑤) = (𝐺‘(𝐻𝑦)))
1817breq2d 5075 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → ((𝐺‘(𝐻𝑥))𝑇(𝐺𝑤) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
1916, 18bibi12d 347 . . . . . . . . . . 11 (𝑤 = (𝐻𝑦) → (((𝐻𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤)) ↔ ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦)))))
2015, 19rspc2va 3638 . . . . . . . . . 10 ((((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
218, 10, 11, 20syl21anc 835 . . . . . . . . 9 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
22 fvco3 6757 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝑥𝐴) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
236, 7, 22syl2anc 584 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
24 fvco3 6757 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝑦𝐴) → ((𝐺𝐻)‘𝑦) = (𝐺‘(𝐻𝑦)))
256, 9, 24syl2anc 584 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝐻)‘𝑦) = (𝐺‘(𝐻𝑦)))
2623, 25breq12d 5076 . . . . . . . . 9 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
2721, 26bitr4d 283 . . . . . . . 8 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦)))
2827bibi2d 344 . . . . . . 7 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
29282ralbidva 3203 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3029biimpd 230 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3130impancom 452 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3231imp 407 . . 3 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦)))
334, 32jca 512 . 2 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → ((𝐺𝐻):𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
34 df-isom 6361 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
35 df-isom 6361 . . 3 (𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶) ↔ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))))
3634, 35anbi12i 626 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) ↔ ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))))
37 df-isom 6361 . 2 ((𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶) ↔ ((𝐺𝐻):𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3833, 36, 373imtr4i 293 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3143   class class class wbr 5063  ccom 5558  wf 6348  1-1-ontowf1o 6351  cfv 6352   Isom wiso 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361
This theorem is referenced by:  weisoeq  7100  oieu  8992  fz1isolem  13809  erdsze2lem2  32335  fzisoeu  41432
  Copyright terms: Public domain W3C validator