Step | Hyp | Ref
| Expression |
1 | | isorel 7197 |
. . . . 5
⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦))) |
2 | | fvres 6793 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) |
3 | | fvres 6793 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑦) = (𝐹‘𝑦)) |
4 | 2, 3 | breqan12d 5090 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦) ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
5 | 4 | adantl 482 |
. . . . 5
⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦) ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
6 | 1, 5 | bitrd 278 |
. . . 4
⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
7 | 6 | biimpd 228 |
. . 3
⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
8 | 7 | ralrimivva 3123 |
. 2
⊢ ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
9 | | ffn 6600 |
. . . . . . . 8
⊢ (𝐹:𝐵⟶𝐶 → 𝐹 Fn 𝐵) |
10 | 9 | ad2antrl 725 |
. . . . . . 7
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → 𝐹 Fn 𝐵) |
11 | | simprr 770 |
. . . . . . 7
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) |
12 | | fnssres 6555 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐴) Fn 𝐴) |
13 | 10, 11, 12 | syl2anc 584 |
. . . . . 6
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → (𝐹 ↾ 𝐴) Fn 𝐴) |
14 | 13 | 3adant3 1131 |
. . . . 5
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → (𝐹 ↾ 𝐴) Fn 𝐴) |
15 | | df-ima 5602 |
. . . . . . 7
⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) |
16 | 15 | eqcomi 2747 |
. . . . . 6
⊢ ran
(𝐹 ↾ 𝐴) = (𝐹 “ 𝐴) |
17 | 16 | a1i 11 |
. . . . 5
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴)) |
18 | | fvres 6793 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑧) = (𝐹‘𝑧)) |
19 | | fvres 6793 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑤) = (𝐹‘𝑤)) |
20 | 18, 19 | eqeqan12d 2752 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (((𝐹 ↾ 𝐴)‘𝑧) = ((𝐹 ↾ 𝐴)‘𝑤) ↔ (𝐹‘𝑧) = (𝐹‘𝑤))) |
21 | 20 | adantl 482 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑧) = ((𝐹 ↾ 𝐴)‘𝑤) ↔ (𝐹‘𝑧) = (𝐹‘𝑤))) |
22 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑧 ∈ 𝐴) |
23 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑤 ∈ 𝐴) |
24 | | simpl3 1192 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
25 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) |
26 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
27 | 26 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑦))) |
28 | 25, 27 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦)) ↔ (𝑧𝑅𝑦 → (𝐹‘𝑧)𝑆(𝐹‘𝑦)))) |
29 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) |
30 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
31 | 30 | breq2d 5086 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑧)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
32 | 29, 31 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → ((𝑧𝑅𝑦 → (𝐹‘𝑧)𝑆(𝐹‘𝑦)) ↔ (𝑧𝑅𝑤 → (𝐹‘𝑧)𝑆(𝐹‘𝑤)))) |
33 | 28, 32 | rspc2va 3571 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → (𝑧𝑅𝑤 → (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
34 | 22, 23, 24, 33 | syl21anc 835 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧𝑅𝑤 → (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
35 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑥𝑅𝑦 ↔ 𝑤𝑅𝑦)) |
36 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
37 | 36 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑤)𝑆(𝐹‘𝑦))) |
38 | 35, 37 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦)) ↔ (𝑤𝑅𝑦 → (𝐹‘𝑤)𝑆(𝐹‘𝑦)))) |
39 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑤𝑅𝑦 ↔ 𝑤𝑅𝑧)) |
40 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
41 | 40 | breq2d 5086 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑤)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑤)𝑆(𝐹‘𝑧))) |
42 | 39, 41 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((𝑤𝑅𝑦 → (𝐹‘𝑤)𝑆(𝐹‘𝑦)) ↔ (𝑤𝑅𝑧 → (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
43 | 38, 42 | rspc2va 3571 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → (𝑤𝑅𝑧 → (𝐹‘𝑤)𝑆(𝐹‘𝑧))) |
44 | 23, 22, 24, 43 | syl21anc 835 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑤𝑅𝑧 → (𝐹‘𝑤)𝑆(𝐹‘𝑧))) |
45 | 34, 44 | orim12d 962 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑧𝑅𝑤 ∨ 𝑤𝑅𝑧) → ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
46 | 45 | con3d 152 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (¬ ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)) → ¬ (𝑧𝑅𝑤 ∨ 𝑤𝑅𝑧))) |
47 | | simpl1r 1224 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑆 Or 𝐶) |
48 | | simpl2l 1225 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝐹:𝐵⟶𝐶) |
49 | | simpl2r 1226 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝐴 ⊆ 𝐵) |
50 | 49, 22 | sseldd 3922 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑧 ∈ 𝐵) |
51 | 48, 50 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝐹‘𝑧) ∈ 𝐶) |
52 | 49, 23 | sseldd 3922 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑤 ∈ 𝐵) |
53 | 48, 52 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝐹‘𝑤) ∈ 𝐶) |
54 | | sotrieq 5532 |
. . . . . . . . 9
⊢ ((𝑆 Or 𝐶 ∧ ((𝐹‘𝑧) ∈ 𝐶 ∧ (𝐹‘𝑤) ∈ 𝐶)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ¬ ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
55 | 47, 51, 53, 54 | syl12anc 834 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ¬ ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
56 | | simpl1l 1223 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑅 Or 𝐵) |
57 | | sotrieq 5532 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐵 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 = 𝑤 ↔ ¬ (𝑧𝑅𝑤 ∨ 𝑤𝑅𝑧))) |
58 | 56, 50, 52, 57 | syl12anc 834 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧 = 𝑤 ↔ ¬ (𝑧𝑅𝑤 ∨ 𝑤𝑅𝑧))) |
59 | 46, 55, 58 | 3imtr4d 294 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
60 | 21, 59 | sylbid 239 |
. . . . . 6
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑧) = ((𝐹 ↾ 𝐴)‘𝑤) → 𝑧 = 𝑤)) |
61 | 60 | ralrimivva 3123 |
. . . . 5
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (((𝐹 ↾ 𝐴)‘𝑧) = ((𝐹 ↾ 𝐴)‘𝑤) → 𝑧 = 𝑤)) |
62 | | dff1o6 7147 |
. . . . 5
⊢ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴) ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (((𝐹 ↾ 𝐴)‘𝑧) = ((𝐹 ↾ 𝐴)‘𝑤) → 𝑧 = 𝑤))) |
63 | 14, 17, 61, 62 | syl3anbrc 1342 |
. . . 4
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴)) |
64 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) |
65 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤))) |
66 | 65, 44 | orim12d 962 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑧 = 𝑤 ∨ 𝑤𝑅𝑧) → ((𝐹‘𝑧) = (𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
67 | 66 | con3d 152 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (¬ ((𝐹‘𝑧) = (𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)) → ¬ (𝑧 = 𝑤 ∨ 𝑤𝑅𝑧))) |
68 | | sotric 5531 |
. . . . . . . . 9
⊢ ((𝑆 Or 𝐶 ∧ ((𝐹‘𝑧) ∈ 𝐶 ∧ (𝐹‘𝑤) ∈ 𝐶)) → ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ↔ ¬ ((𝐹‘𝑧) = (𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
69 | 47, 51, 53, 68 | syl12anc 834 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ↔ ¬ ((𝐹‘𝑧) = (𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
70 | | sotric 5531 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐵 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧𝑅𝑤 ↔ ¬ (𝑧 = 𝑤 ∨ 𝑤𝑅𝑧))) |
71 | 56, 50, 52, 70 | syl12anc 834 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧𝑅𝑤 ↔ ¬ (𝑧 = 𝑤 ∨ 𝑤𝑅𝑧))) |
72 | 67, 69, 71 | 3imtr4d 294 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝐹‘𝑧)𝑆(𝐹‘𝑤) → 𝑧𝑅𝑤)) |
73 | 34, 72 | impbid 211 |
. . . . . 6
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
74 | 18, 19 | breqan12d 5090 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (((𝐹 ↾ 𝐴)‘𝑧)𝑆((𝐹 ↾ 𝐴)‘𝑤) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
75 | 74 | adantl 482 |
. . . . . 6
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑧)𝑆((𝐹 ↾ 𝐴)‘𝑤) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
76 | 73, 75 | bitr4d 281 |
. . . . 5
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧𝑅𝑤 ↔ ((𝐹 ↾ 𝐴)‘𝑧)𝑆((𝐹 ↾ 𝐴)‘𝑤))) |
77 | 76 | ralrimivva 3123 |
. . . 4
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ ((𝐹 ↾ 𝐴)‘𝑧)𝑆((𝐹 ↾ 𝐴)‘𝑤))) |
78 | | df-isom 6442 |
. . . 4
⊢ ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ↔ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ ((𝐹 ↾ 𝐴)‘𝑧)𝑆((𝐹 ↾ 𝐴)‘𝑤)))) |
79 | 63, 77, 78 | sylanbrc 583 |
. . 3
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → (𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴))) |
80 | 79 | 3expia 1120 |
. 2
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦)) → (𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)))) |
81 | 8, 80 | impbid2 225 |
1
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦)))) |