| Step | Hyp | Ref
| Expression |
| 1 | | isorel 7346 |
. . . . 5
⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦))) |
| 2 | | fvres 6925 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) |
| 3 | | fvres 6925 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑦) = (𝐹‘𝑦)) |
| 4 | 2, 3 | breqan12d 5159 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦) ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
| 5 | 4 | adantl 481 |
. . . . 5
⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦) ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
| 6 | 1, 5 | bitrd 279 |
. . . 4
⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
| 7 | 6 | biimpd 229 |
. . 3
⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
| 8 | 7 | ralrimivva 3202 |
. 2
⊢ ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
| 9 | | ffn 6736 |
. . . . . . . 8
⊢ (𝐹:𝐵⟶𝐶 → 𝐹 Fn 𝐵) |
| 10 | 9 | ad2antrl 728 |
. . . . . . 7
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → 𝐹 Fn 𝐵) |
| 11 | | simprr 773 |
. . . . . . 7
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) |
| 12 | | fnssres 6691 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐴) Fn 𝐴) |
| 13 | 10, 11, 12 | syl2anc 584 |
. . . . . 6
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → (𝐹 ↾ 𝐴) Fn 𝐴) |
| 14 | 13 | 3adant3 1133 |
. . . . 5
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → (𝐹 ↾ 𝐴) Fn 𝐴) |
| 15 | | df-ima 5698 |
. . . . . . 7
⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) |
| 16 | 15 | eqcomi 2746 |
. . . . . 6
⊢ ran
(𝐹 ↾ 𝐴) = (𝐹 “ 𝐴) |
| 17 | 16 | a1i 11 |
. . . . 5
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴)) |
| 18 | | fvres 6925 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑧) = (𝐹‘𝑧)) |
| 19 | | fvres 6925 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑤) = (𝐹‘𝑤)) |
| 20 | 18, 19 | eqeqan12d 2751 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (((𝐹 ↾ 𝐴)‘𝑧) = ((𝐹 ↾ 𝐴)‘𝑤) ↔ (𝐹‘𝑧) = (𝐹‘𝑤))) |
| 21 | 20 | adantl 481 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑧) = ((𝐹 ↾ 𝐴)‘𝑤) ↔ (𝐹‘𝑧) = (𝐹‘𝑤))) |
| 22 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑧 ∈ 𝐴) |
| 23 | | simprr 773 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑤 ∈ 𝐴) |
| 24 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
| 25 | | breq1 5146 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) |
| 26 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 27 | 26 | breq1d 5153 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑦))) |
| 28 | 25, 27 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦)) ↔ (𝑧𝑅𝑦 → (𝐹‘𝑧)𝑆(𝐹‘𝑦)))) |
| 29 | | breq2 5147 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) |
| 30 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
| 31 | 30 | breq2d 5155 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑧)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
| 32 | 29, 31 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → ((𝑧𝑅𝑦 → (𝐹‘𝑧)𝑆(𝐹‘𝑦)) ↔ (𝑧𝑅𝑤 → (𝐹‘𝑧)𝑆(𝐹‘𝑤)))) |
| 33 | 28, 32 | rspc2va 3634 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → (𝑧𝑅𝑤 → (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
| 34 | 22, 23, 24, 33 | syl21anc 838 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧𝑅𝑤 → (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
| 35 | | breq1 5146 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑥𝑅𝑦 ↔ 𝑤𝑅𝑦)) |
| 36 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
| 37 | 36 | breq1d 5153 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑤)𝑆(𝐹‘𝑦))) |
| 38 | 35, 37 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦)) ↔ (𝑤𝑅𝑦 → (𝐹‘𝑤)𝑆(𝐹‘𝑦)))) |
| 39 | | breq2 5147 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑤𝑅𝑦 ↔ 𝑤𝑅𝑧)) |
| 40 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 41 | 40 | breq2d 5155 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑤)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑤)𝑆(𝐹‘𝑧))) |
| 42 | 39, 41 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((𝑤𝑅𝑦 → (𝐹‘𝑤)𝑆(𝐹‘𝑦)) ↔ (𝑤𝑅𝑧 → (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
| 43 | 38, 42 | rspc2va 3634 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → (𝑤𝑅𝑧 → (𝐹‘𝑤)𝑆(𝐹‘𝑧))) |
| 44 | 23, 22, 24, 43 | syl21anc 838 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑤𝑅𝑧 → (𝐹‘𝑤)𝑆(𝐹‘𝑧))) |
| 45 | 34, 44 | orim12d 967 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑧𝑅𝑤 ∨ 𝑤𝑅𝑧) → ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
| 46 | 45 | con3d 152 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (¬ ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)) → ¬ (𝑧𝑅𝑤 ∨ 𝑤𝑅𝑧))) |
| 47 | | simpl1r 1226 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑆 Or 𝐶) |
| 48 | | simpl2l 1227 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝐹:𝐵⟶𝐶) |
| 49 | | simpl2r 1228 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝐴 ⊆ 𝐵) |
| 50 | 49, 22 | sseldd 3984 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑧 ∈ 𝐵) |
| 51 | 48, 50 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝐹‘𝑧) ∈ 𝐶) |
| 52 | 49, 23 | sseldd 3984 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑤 ∈ 𝐵) |
| 53 | 48, 52 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝐹‘𝑤) ∈ 𝐶) |
| 54 | | sotrieq 5623 |
. . . . . . . . 9
⊢ ((𝑆 Or 𝐶 ∧ ((𝐹‘𝑧) ∈ 𝐶 ∧ (𝐹‘𝑤) ∈ 𝐶)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ¬ ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
| 55 | 47, 51, 53, 54 | syl12anc 837 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ¬ ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
| 56 | | simpl1l 1225 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → 𝑅 Or 𝐵) |
| 57 | | sotrieq 5623 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐵 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 = 𝑤 ↔ ¬ (𝑧𝑅𝑤 ∨ 𝑤𝑅𝑧))) |
| 58 | 56, 50, 52, 57 | syl12anc 837 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧 = 𝑤 ↔ ¬ (𝑧𝑅𝑤 ∨ 𝑤𝑅𝑧))) |
| 59 | 46, 55, 58 | 3imtr4d 294 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 60 | 21, 59 | sylbid 240 |
. . . . . 6
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑧) = ((𝐹 ↾ 𝐴)‘𝑤) → 𝑧 = 𝑤)) |
| 61 | 60 | ralrimivva 3202 |
. . . . 5
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (((𝐹 ↾ 𝐴)‘𝑧) = ((𝐹 ↾ 𝐴)‘𝑤) → 𝑧 = 𝑤)) |
| 62 | | dff1o6 7295 |
. . . . 5
⊢ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴) ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (((𝐹 ↾ 𝐴)‘𝑧) = ((𝐹 ↾ 𝐴)‘𝑤) → 𝑧 = 𝑤))) |
| 63 | 14, 17, 61, 62 | syl3anbrc 1344 |
. . . 4
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴)) |
| 64 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) |
| 65 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤))) |
| 66 | 65, 44 | orim12d 967 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑧 = 𝑤 ∨ 𝑤𝑅𝑧) → ((𝐹‘𝑧) = (𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
| 67 | 66 | con3d 152 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (¬ ((𝐹‘𝑧) = (𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)) → ¬ (𝑧 = 𝑤 ∨ 𝑤𝑅𝑧))) |
| 68 | | sotric 5622 |
. . . . . . . . 9
⊢ ((𝑆 Or 𝐶 ∧ ((𝐹‘𝑧) ∈ 𝐶 ∧ (𝐹‘𝑤) ∈ 𝐶)) → ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ↔ ¬ ((𝐹‘𝑧) = (𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
| 69 | 47, 51, 53, 68 | syl12anc 837 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝐹‘𝑧)𝑆(𝐹‘𝑤) ↔ ¬ ((𝐹‘𝑧) = (𝐹‘𝑤) ∨ (𝐹‘𝑤)𝑆(𝐹‘𝑧)))) |
| 70 | | sotric 5622 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐵 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧𝑅𝑤 ↔ ¬ (𝑧 = 𝑤 ∨ 𝑤𝑅𝑧))) |
| 71 | 56, 50, 52, 70 | syl12anc 837 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧𝑅𝑤 ↔ ¬ (𝑧 = 𝑤 ∨ 𝑤𝑅𝑧))) |
| 72 | 67, 69, 71 | 3imtr4d 294 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝐹‘𝑧)𝑆(𝐹‘𝑤) → 𝑧𝑅𝑤)) |
| 73 | 34, 72 | impbid 212 |
. . . . . 6
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
| 74 | 18, 19 | breqan12d 5159 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (((𝐹 ↾ 𝐴)‘𝑧)𝑆((𝐹 ↾ 𝐴)‘𝑤) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
| 75 | 74 | adantl 481 |
. . . . . 6
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑧)𝑆((𝐹 ↾ 𝐴)‘𝑤) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
| 76 | 73, 75 | bitr4d 282 |
. . . . 5
⊢ ((((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧𝑅𝑤 ↔ ((𝐹 ↾ 𝐴)‘𝑧)𝑆((𝐹 ↾ 𝐴)‘𝑤))) |
| 77 | 76 | ralrimivva 3202 |
. . . 4
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ ((𝐹 ↾ 𝐴)‘𝑧)𝑆((𝐹 ↾ 𝐴)‘𝑤))) |
| 78 | | df-isom 6570 |
. . . 4
⊢ ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ↔ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ ((𝐹 ↾ 𝐴)‘𝑧)𝑆((𝐹 ↾ 𝐴)‘𝑤)))) |
| 79 | 63, 77, 78 | sylanbrc 583 |
. . 3
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) → (𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴))) |
| 80 | 79 | 3expia 1122 |
. 2
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦)) → (𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)))) |
| 81 | 8, 80 | impbid2 226 |
1
⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦)))) |