MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoini2 Structured version   Visualization version   GIF version

Theorem isoini2 7375
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
isoini2.1 𝐶 = (𝐴 ∩ (𝑅 “ {𝑋}))
isoini2.2 𝐷 = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)}))
Assertion
Ref Expression
isoini2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))

Proof of Theorem isoini2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 7359 . . . . . 6 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
2 f1of1 6861 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
31, 2syl 17 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1𝐵)
43adantr 480 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → 𝐻:𝐴1-1𝐵)
5 isoini2.1 . . . . 5 𝐶 = (𝐴 ∩ (𝑅 “ {𝑋}))
6 inss1 4258 . . . . 5 (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ 𝐴
75, 6eqsstri 4043 . . . 4 𝐶𝐴
8 f1ores 6876 . . . 4 ((𝐻:𝐴1-1𝐵𝐶𝐴) → (𝐻𝐶):𝐶1-1-onto→(𝐻𝐶))
94, 7, 8sylancl 585 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶):𝐶1-1-onto→(𝐻𝐶))
10 isoini 7374 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑋}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)})))
115imaeq2i 6087 . . . . 5 (𝐻𝐶) = (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑋})))
12 isoini2.2 . . . . 5 𝐷 = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)}))
1310, 11, 123eqtr4g 2805 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) = 𝐷)
1413f1oeq3d 6859 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ((𝐻𝐶):𝐶1-1-onto→(𝐻𝐶) ↔ (𝐻𝐶):𝐶1-1-onto𝐷))
159, 14mpbid 232 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶):𝐶1-1-onto𝐷)
16 df-isom 6582 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
1716simprbi 496 . . . . . 6 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
1817adantr 480 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
19 ssralv 4077 . . . . . 6 (𝐶𝐴 → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2019ralimdv 3175 . . . . 5 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐴𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
217, 18, 20mpsyl 68 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐴𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
22 ssralv 4077 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
237, 21, 22mpsyl 68 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
24 fvres 6939 . . . . . . 7 (𝑥𝐶 → ((𝐻𝐶)‘𝑥) = (𝐻𝑥))
25 fvres 6939 . . . . . . 7 (𝑦𝐶 → ((𝐻𝐶)‘𝑦) = (𝐻𝑦))
2624, 25breqan12d 5182 . . . . . 6 ((𝑥𝐶𝑦𝐶) → (((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦) ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
2726bibi2d 342 . . . . 5 ((𝑥𝐶𝑦𝐶) → ((𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2827ralbidva 3182 . . . 4 (𝑥𝐶 → (∀𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)) ↔ ∀𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2928ralbiia 3097 . . 3 (∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)) ↔ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
3023, 29sylibr 234 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)))
31 df-isom 6582 . 2 ((𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷) ↔ ((𝐻𝐶):𝐶1-1-onto𝐷 ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦))))
3215, 30, 31sylanbrc 582 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976  {csn 4648   class class class wbr 5166  ccnv 5699  cres 5702  cima 5703  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573   Isom wiso 6574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582
This theorem is referenced by:  fz1isolem  14510
  Copyright terms: Public domain W3C validator