Step | Hyp | Ref
| Expression |
1 | | isof1o 7174 |
. . . . . 6
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
2 | | f1of1 6699 |
. . . . . 6
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1→𝐵) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → 𝐻:𝐴–1-1→𝐵) |
5 | | isoini2.1 |
. . . . 5
⊢ 𝐶 = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
6 | | inss1 4159 |
. . . . 5
⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 |
7 | 5, 6 | eqsstri 3951 |
. . . 4
⊢ 𝐶 ⊆ 𝐴 |
8 | | f1ores 6714 |
. . . 4
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐻 ↾ 𝐶):𝐶–1-1-onto→(𝐻 “ 𝐶)) |
9 | 4, 7, 8 | sylancl 585 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶):𝐶–1-1-onto→(𝐻 “ 𝐶)) |
10 | | isoini 7189 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝑋}))) = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝑋)}))) |
11 | 5 | imaeq2i 5956 |
. . . . 5
⊢ (𝐻 “ 𝐶) = (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝑋}))) |
12 | | isoini2.2 |
. . . . 5
⊢ 𝐷 = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝑋)})) |
13 | 10, 11, 12 | 3eqtr4g 2804 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 “ 𝐶) = 𝐷) |
14 | 13 | f1oeq3d 6697 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ((𝐻 ↾ 𝐶):𝐶–1-1-onto→(𝐻 “ 𝐶) ↔ (𝐻 ↾ 𝐶):𝐶–1-1-onto→𝐷)) |
15 | 9, 14 | mpbid 231 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶):𝐶–1-1-onto→𝐷) |
16 | | df-isom 6427 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
17 | 16 | simprbi 496 |
. . . . . 6
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
18 | 17 | adantr 480 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
19 | | ssralv 3983 |
. . . . . 6
⊢ (𝐶 ⊆ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
20 | 19 | ralimdv 3103 |
. . . . 5
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
21 | 7, 18, 20 | mpsyl 68 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
22 | | ssralv 3983 |
. . . 4
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
23 | 7, 21, 22 | mpsyl 68 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
24 | | fvres 6775 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → ((𝐻 ↾ 𝐶)‘𝑥) = (𝐻‘𝑥)) |
25 | | fvres 6775 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐶 → ((𝐻 ↾ 𝐶)‘𝑦) = (𝐻‘𝑦)) |
26 | 24, 25 | breqan12d 5086 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
27 | 26 | bibi2d 342 |
. . . . 5
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
28 | 27 | ralbidva 3119 |
. . . 4
⊢ (𝑥 ∈ 𝐶 → (∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)) ↔ ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
29 | 28 | ralbiia 3089 |
. . 3
⊢
(∀𝑥 ∈
𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)) ↔ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
30 | 23, 29 | sylibr 233 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦))) |
31 | | df-isom 6427 |
. 2
⊢ ((𝐻 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷) ↔ ((𝐻 ↾ 𝐶):𝐶–1-1-onto→𝐷 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)))) |
32 | 15, 30, 31 | sylanbrc 582 |
1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)) |