| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isof1o 7344 | . . . . . 6
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | 
| 2 |  | f1of1 6846 | . . . . . 6
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) | 
| 3 | 1, 2 | syl 17 | . . . . 5
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1→𝐵) | 
| 4 | 3 | adantr 480 | . . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → 𝐻:𝐴–1-1→𝐵) | 
| 5 |  | isoini2.1 | . . . . 5
⊢ 𝐶 = (𝐴 ∩ (◡𝑅 “ {𝑋})) | 
| 6 |  | inss1 4236 | . . . . 5
⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ 𝐴 | 
| 7 | 5, 6 | eqsstri 4029 | . . . 4
⊢ 𝐶 ⊆ 𝐴 | 
| 8 |  | f1ores 6861 | . . . 4
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐻 ↾ 𝐶):𝐶–1-1-onto→(𝐻 “ 𝐶)) | 
| 9 | 4, 7, 8 | sylancl 586 | . . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶):𝐶–1-1-onto→(𝐻 “ 𝐶)) | 
| 10 |  | isoini 7359 | . . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝑋}))) = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝑋)}))) | 
| 11 | 5 | imaeq2i 6075 | . . . . 5
⊢ (𝐻 “ 𝐶) = (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝑋}))) | 
| 12 |  | isoini2.2 | . . . . 5
⊢ 𝐷 = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝑋)})) | 
| 13 | 10, 11, 12 | 3eqtr4g 2801 | . . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 “ 𝐶) = 𝐷) | 
| 14 | 13 | f1oeq3d 6844 | . . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ((𝐻 ↾ 𝐶):𝐶–1-1-onto→(𝐻 “ 𝐶) ↔ (𝐻 ↾ 𝐶):𝐶–1-1-onto→𝐷)) | 
| 15 | 9, 14 | mpbid 232 | . 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶):𝐶–1-1-onto→𝐷) | 
| 16 |  | df-isom 6569 | . . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | 
| 17 | 16 | simprbi 496 | . . . . . 6
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) | 
| 18 | 17 | adantr 480 | . . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) | 
| 19 |  | ssralv 4051 | . . . . . 6
⊢ (𝐶 ⊆ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | 
| 20 | 19 | ralimdv 3168 | . . . . 5
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | 
| 21 | 7, 18, 20 | mpsyl 68 | . . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) | 
| 22 |  | ssralv 4051 | . . . 4
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | 
| 23 | 7, 21, 22 | mpsyl 68 | . . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) | 
| 24 |  | fvres 6924 | . . . . . . 7
⊢ (𝑥 ∈ 𝐶 → ((𝐻 ↾ 𝐶)‘𝑥) = (𝐻‘𝑥)) | 
| 25 |  | fvres 6924 | . . . . . . 7
⊢ (𝑦 ∈ 𝐶 → ((𝐻 ↾ 𝐶)‘𝑦) = (𝐻‘𝑦)) | 
| 26 | 24, 25 | breqan12d 5158 | . . . . . 6
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) | 
| 27 | 26 | bibi2d 342 | . . . . 5
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | 
| 28 | 27 | ralbidva 3175 | . . . 4
⊢ (𝑥 ∈ 𝐶 → (∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)) ↔ ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | 
| 29 | 28 | ralbiia 3090 | . . 3
⊢
(∀𝑥 ∈
𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)) ↔ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) | 
| 30 | 23, 29 | sylibr 234 | . 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦))) | 
| 31 |  | df-isom 6569 | . 2
⊢ ((𝐻 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷) ↔ ((𝐻 ↾ 𝐶):𝐶–1-1-onto→𝐷 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥𝑅𝑦 ↔ ((𝐻 ↾ 𝐶)‘𝑥)𝑆((𝐻 ↾ 𝐶)‘𝑦)))) | 
| 32 | 15, 30, 31 | sylanbrc 583 | 1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)) |