MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoid Structured version   Visualization version   GIF version

Theorem isoid 7365
Description: Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isoid ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴)

Proof of Theorem isoid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6900 . 2 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 fvresi 7207 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
3 fvresi 7207 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
42, 3breqan12d 5182 . . . 4 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦) ↔ 𝑥𝑅𝑦))
54bicomd 223 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦)))
65rgen2 3205 . 2 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦))
7 df-isom 6582 . 2 (( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴) ↔ (( I ↾ 𝐴):𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦))))
81, 6, 7mpbir2an 710 1 ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wral 3067   class class class wbr 5166   I cid 5592  cres 5702  1-1-ontowf1o 6572  cfv 6573   Isom wiso 6574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582
This theorem is referenced by:  ordiso  9585
  Copyright terms: Public domain W3C validator