Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isoid | Structured version Visualization version GIF version |
Description: Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isoid | ⊢ ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6698 | . 2 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
2 | fvresi 6988 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
3 | fvresi 6988 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | |
4 | 2, 3 | breqan12d 5069 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦) ↔ 𝑥𝑅𝑦)) |
5 | 4 | bicomd 226 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦))) |
6 | 5 | rgen2 3124 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦)) |
7 | df-isom 6389 | . 2 ⊢ (( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴) ↔ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦)))) | |
8 | 1, 6, 7 | mpbir2an 711 | 1 ⊢ ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2110 ∀wral 3061 class class class wbr 5053 I cid 5454 ↾ cres 5553 –1-1-onto→wf1o 6379 ‘cfv 6380 Isom wiso 6381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 |
This theorem is referenced by: ordiso 9132 |
Copyright terms: Public domain | W3C validator |