MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoid Structured version   Visualization version   GIF version

Theorem isoid 7307
Description: Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isoid ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴)

Proof of Theorem isoid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6841 . 2 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 fvresi 7150 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
3 fvresi 7150 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
42, 3breqan12d 5126 . . . 4 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦) ↔ 𝑥𝑅𝑦))
54bicomd 223 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦)))
65rgen2 3178 . 2 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦))
7 df-isom 6523 . 2 (( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴) ↔ (( I ↾ 𝐴):𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦))))
81, 6, 7mpbir2an 711 1 ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wral 3045   class class class wbr 5110   I cid 5535  cres 5643  1-1-ontowf1o 6513  cfv 6514   Isom wiso 6515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523
This theorem is referenced by:  ordiso  9476
  Copyright terms: Public domain W3C validator