MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoid Structured version   Visualization version   GIF version

Theorem isoid 7349
Description: Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isoid ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴)

Proof of Theorem isoid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6887 . 2 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 fvresi 7193 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
3 fvresi 7193 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
42, 3breqan12d 5164 . . . 4 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦) ↔ 𝑥𝑅𝑦))
54bicomd 223 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦)))
65rgen2 3197 . 2 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦))
7 df-isom 6572 . 2 (( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴) ↔ (( I ↾ 𝐴):𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (( I ↾ 𝐴)‘𝑥)𝑅(( I ↾ 𝐴)‘𝑦))))
81, 6, 7mpbir2an 711 1 ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2106  wral 3059   class class class wbr 5148   I cid 5582  cres 5691  1-1-ontowf1o 6562  cfv 6563   Isom wiso 6564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572
This theorem is referenced by:  ordiso  9554
  Copyright terms: Public domain W3C validator