![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephiso | Structured version Visualization version GIF version |
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
alephiso | ⊢ ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 9174 | . . . . . 6 ⊢ ℵ Fn On | |
2 | isinfcard 9201 | . . . . . . . 8 ⊢ ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ 𝑥 ∈ ran ℵ) | |
3 | 2 | bicomi 216 | . . . . . . 7 ⊢ (𝑥 ∈ ran ℵ ↔ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)) |
4 | 3 | abbi2i 2915 | . . . . . 6 ⊢ ran ℵ = {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
5 | df-fo 6107 | . . . . . 6 ⊢ (ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ Fn On ∧ ran ℵ = {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})) | |
6 | 1, 4, 5 | mpbir2an 703 | . . . . 5 ⊢ ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
7 | fof 6331 | . . . . 5 ⊢ (ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} → ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
9 | aleph11 9193 | . . . . . 6 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) = (ℵ‘𝑧) ↔ 𝑦 = 𝑧)) | |
10 | 9 | biimpd 221 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧)) |
11 | 10 | rgen2a 3158 | . . . 4 ⊢ ∀𝑦 ∈ On ∀𝑧 ∈ On ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧) |
12 | dff13 6740 | . . . 4 ⊢ (ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧))) | |
13 | 8, 11, 12 | mpbir2an 703 | . . 3 ⊢ ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
14 | df-f1o 6108 | . . 3 ⊢ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})) | |
15 | 13, 6, 14 | mpbir2an 703 | . 2 ⊢ ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
16 | alephord2 9185 | . . . 4 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 ∈ 𝑧 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧))) | |
17 | epel 5228 | . . . 4 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
18 | fvex 6424 | . . . . 5 ⊢ (ℵ‘𝑧) ∈ V | |
19 | 18 | epeli 5227 | . . . 4 ⊢ ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)) |
20 | 16, 17, 19 | 3bitr4g 306 | . . 3 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))) |
21 | 20 | rgen2a 3158 | . 2 ⊢ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) |
22 | df-isom 6110 | . 2 ⊢ (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)))) | |
23 | 15, 21, 22 | mpbir2an 703 | 1 ⊢ ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {cab 2785 ∀wral 3089 ⊆ wss 3769 class class class wbr 4843 E cep 5224 ran crn 5313 Oncon0 5941 Fn wfn 6096 ⟶wf 6097 –1-1→wf1 6098 –onto→wfo 6099 –1-1-onto→wf1o 6100 ‘cfv 6101 Isom wiso 6102 ωcom 7299 cardccrd 9047 ℵcale 9048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-oi 8657 df-har 8705 df-card 9051 df-aleph 9052 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |