MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephiso Structured version   Visualization version   GIF version

Theorem alephiso 10095
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
alephiso β„΅ Isom E , E (On, {π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)})

Proof of Theorem alephiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 10062 . . . . . 6 β„΅ Fn On
2 isinfcard 10089 . . . . . . . 8 ((Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯) ↔ π‘₯ ∈ ran β„΅)
32bicomi 223 . . . . . . 7 (π‘₯ ∈ ran β„΅ ↔ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯))
43eqabi 2869 . . . . . 6 ran β„΅ = {π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)}
5 df-fo 6549 . . . . . 6 (β„΅:On–ontoβ†’{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)} ↔ (β„΅ Fn On ∧ ran β„΅ = {π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)}))
61, 4, 5mpbir2an 709 . . . . 5 β„΅:On–ontoβ†’{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)}
7 fof 6805 . . . . 5 (β„΅:On–ontoβ†’{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)} β†’ β„΅:On⟢{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)})
86, 7ax-mp 5 . . . 4 β„΅:On⟢{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)}
9 aleph11 10081 . . . . . 6 ((𝑦 ∈ On ∧ 𝑧 ∈ On) β†’ ((β„΅β€˜π‘¦) = (β„΅β€˜π‘§) ↔ 𝑦 = 𝑧))
109biimpd 228 . . . . 5 ((𝑦 ∈ On ∧ 𝑧 ∈ On) β†’ ((β„΅β€˜π‘¦) = (β„΅β€˜π‘§) β†’ 𝑦 = 𝑧))
1110rgen2 3197 . . . 4 βˆ€π‘¦ ∈ On βˆ€π‘§ ∈ On ((β„΅β€˜π‘¦) = (β„΅β€˜π‘§) β†’ 𝑦 = 𝑧)
12 dff13 7256 . . . 4 (β„΅:On–1-1β†’{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)} ↔ (β„΅:On⟢{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)} ∧ βˆ€π‘¦ ∈ On βˆ€π‘§ ∈ On ((β„΅β€˜π‘¦) = (β„΅β€˜π‘§) β†’ 𝑦 = 𝑧)))
138, 11, 12mpbir2an 709 . . 3 β„΅:On–1-1β†’{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)}
14 df-f1o 6550 . . 3 (β„΅:On–1-1-ontoβ†’{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)} ↔ (β„΅:On–1-1β†’{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)} ∧ β„΅:On–ontoβ†’{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)}))
1513, 6, 14mpbir2an 709 . 2 β„΅:On–1-1-ontoβ†’{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)}
16 alephord2 10073 . . . 4 ((𝑦 ∈ On ∧ 𝑧 ∈ On) β†’ (𝑦 ∈ 𝑧 ↔ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π‘§)))
17 epel 5583 . . . 4 (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧)
18 fvex 6904 . . . . 5 (β„΅β€˜π‘§) ∈ V
1918epeli 5582 . . . 4 ((β„΅β€˜π‘¦) E (β„΅β€˜π‘§) ↔ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π‘§))
2016, 17, 193bitr4g 313 . . 3 ((𝑦 ∈ On ∧ 𝑧 ∈ On) β†’ (𝑦 E 𝑧 ↔ (β„΅β€˜π‘¦) E (β„΅β€˜π‘§)))
2120rgen2 3197 . 2 βˆ€π‘¦ ∈ On βˆ€π‘§ ∈ On (𝑦 E 𝑧 ↔ (β„΅β€˜π‘¦) E (β„΅β€˜π‘§))
22 df-isom 6552 . 2 (β„΅ Isom E , E (On, {π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)}) ↔ (β„΅:On–1-1-ontoβ†’{π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)} ∧ βˆ€π‘¦ ∈ On βˆ€π‘§ ∈ On (𝑦 E 𝑧 ↔ (β„΅β€˜π‘¦) E (β„΅β€˜π‘§))))
2315, 21, 22mpbir2an 709 1 β„΅ Isom E , E (On, {π‘₯ ∣ (Ο‰ βŠ† π‘₯ ∧ (cardβ€˜π‘₯) = π‘₯)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061   βŠ† wss 3948   class class class wbr 5148   E cep 5579  ran crn 5677  Oncon0 6364   Fn wfn 6538  βŸΆwf 6539  β€“1-1β†’wf1 6540  β€“ontoβ†’wfo 6541  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543   Isom wiso 6544  Ο‰com 7857  cardccrd 9932  β„΅cale 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-har 9554  df-card 9936  df-aleph 9937
This theorem is referenced by:  alephiso2  42611
  Copyright terms: Public domain W3C validator