Step | Hyp | Ref
| Expression |
1 | | alephfnon 10062 |
. . . . . 6
β’ β΅
Fn On |
2 | | isinfcard 10089 |
. . . . . . . 8
β’ ((Ο
β π₯ β§
(cardβπ₯) = π₯) β π₯ β ran β΅) |
3 | 2 | bicomi 223 |
. . . . . . 7
β’ (π₯ β ran β΅ β
(Ο β π₯ β§
(cardβπ₯) = π₯)) |
4 | 3 | eqabi 2869 |
. . . . . 6
β’ ran
β΅ = {π₯ β£
(Ο β π₯ β§
(cardβπ₯) = π₯)} |
5 | | df-fo 6549 |
. . . . . 6
β’
(β΅:Onβontoβ{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)} β (β΅ Fn On β§ ran β΅ =
{π₯ β£ (Ο β
π₯ β§ (cardβπ₯) = π₯)})) |
6 | 1, 4, 5 | mpbir2an 709 |
. . . . 5
β’
β΅:Onβontoβ{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)} |
7 | | fof 6805 |
. . . . 5
β’
(β΅:Onβontoβ{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)} β β΅:OnβΆ{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)}) |
8 | 6, 7 | ax-mp 5 |
. . . 4
β’
β΅:OnβΆ{π₯
β£ (Ο β π₯
β§ (cardβπ₯) =
π₯)} |
9 | | aleph11 10081 |
. . . . . 6
β’ ((π¦ β On β§ π§ β On) β
((β΅βπ¦) =
(β΅βπ§) β
π¦ = π§)) |
10 | 9 | biimpd 228 |
. . . . 5
β’ ((π¦ β On β§ π§ β On) β
((β΅βπ¦) =
(β΅βπ§) β
π¦ = π§)) |
11 | 10 | rgen2 3197 |
. . . 4
β’
βπ¦ β On
βπ§ β On
((β΅βπ¦) =
(β΅βπ§) β
π¦ = π§) |
12 | | dff13 7256 |
. . . 4
β’
(β΅:Onβ1-1β{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)} β (β΅:OnβΆ{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)} β§ βπ¦ β On βπ§ β On ((β΅βπ¦) = (β΅βπ§) β π¦ = π§))) |
13 | 8, 11, 12 | mpbir2an 709 |
. . 3
β’
β΅:Onβ1-1β{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)} |
14 | | df-f1o 6550 |
. . 3
β’
(β΅:Onβ1-1-ontoβ{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)} β (β΅:Onβ1-1β{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)} β§ β΅:Onβontoβ{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)})) |
15 | 13, 6, 14 | mpbir2an 709 |
. 2
β’
β΅:Onβ1-1-ontoβ{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)} |
16 | | alephord2 10073 |
. . . 4
β’ ((π¦ β On β§ π§ β On) β (π¦ β π§ β (β΅βπ¦) β (β΅βπ§))) |
17 | | epel 5583 |
. . . 4
β’ (π¦ E π§ β π¦ β π§) |
18 | | fvex 6904 |
. . . . 5
β’
(β΅βπ§)
β V |
19 | 18 | epeli 5582 |
. . . 4
β’
((β΅βπ¦) E
(β΅βπ§) β
(β΅βπ¦) β
(β΅βπ§)) |
20 | 16, 17, 19 | 3bitr4g 313 |
. . 3
β’ ((π¦ β On β§ π§ β On) β (π¦ E π§ β (β΅βπ¦) E (β΅βπ§))) |
21 | 20 | rgen2 3197 |
. 2
β’
βπ¦ β On
βπ§ β On (π¦ E π§ β (β΅βπ¦) E (β΅βπ§)) |
22 | | df-isom 6552 |
. 2
β’ (β΅
Isom E , E (On, {π₯ β£
(Ο β π₯ β§
(cardβπ₯) = π₯)}) β
(β΅:Onβ1-1-ontoβ{π₯ β£ (Ο β π₯ β§ (cardβπ₯) = π₯)} β§ βπ¦ β On βπ§ β On (π¦ E π§ β (β΅βπ¦) E (β΅βπ§)))) |
23 | 15, 21, 22 | mpbir2an 709 |
1
β’ β΅
Isom E , E (On, {π₯ β£
(Ο β π₯ β§
(cardβπ₯) = π₯)}) |