![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephiso | Structured version Visualization version GIF version |
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
alephiso | ⊢ ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 10134 | . . . . . 6 ⊢ ℵ Fn On | |
2 | isinfcard 10161 | . . . . . . . 8 ⊢ ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ 𝑥 ∈ ran ℵ) | |
3 | 2 | bicomi 224 | . . . . . . 7 ⊢ (𝑥 ∈ ran ℵ ↔ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)) |
4 | 3 | eqabi 2880 | . . . . . 6 ⊢ ran ℵ = {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
5 | df-fo 6579 | . . . . . 6 ⊢ (ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ Fn On ∧ ran ℵ = {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})) | |
6 | 1, 4, 5 | mpbir2an 710 | . . . . 5 ⊢ ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
7 | fof 6834 | . . . . 5 ⊢ (ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} → ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
9 | aleph11 10153 | . . . . . 6 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) = (ℵ‘𝑧) ↔ 𝑦 = 𝑧)) | |
10 | 9 | biimpd 229 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧)) |
11 | 10 | rgen2 3205 | . . . 4 ⊢ ∀𝑦 ∈ On ∀𝑧 ∈ On ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧) |
12 | dff13 7292 | . . . 4 ⊢ (ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧))) | |
13 | 8, 11, 12 | mpbir2an 710 | . . 3 ⊢ ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
14 | df-f1o 6580 | . . 3 ⊢ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})) | |
15 | 13, 6, 14 | mpbir2an 710 | . 2 ⊢ ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
16 | alephord2 10145 | . . . 4 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 ∈ 𝑧 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧))) | |
17 | epel 5602 | . . . 4 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
18 | fvex 6933 | . . . . 5 ⊢ (ℵ‘𝑧) ∈ V | |
19 | 18 | epeli 5601 | . . . 4 ⊢ ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)) |
20 | 16, 17, 19 | 3bitr4g 314 | . . 3 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))) |
21 | 20 | rgen2 3205 | . 2 ⊢ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) |
22 | df-isom 6582 | . 2 ⊢ (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)))) | |
23 | 15, 21, 22 | mpbir2an 710 | 1 ⊢ ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ⊆ wss 3976 class class class wbr 5166 E cep 5598 ran crn 5701 Oncon0 6395 Fn wfn 6568 ⟶wf 6569 –1-1→wf1 6570 –onto→wfo 6571 –1-1-onto→wf1o 6572 ‘cfv 6573 Isom wiso 6574 ωcom 7903 cardccrd 10004 ℵcale 10005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-har 9626 df-card 10008 df-aleph 10009 |
This theorem is referenced by: alephiso2 43520 |
Copyright terms: Public domain | W3C validator |