![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephiso | Structured version Visualization version GIF version |
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
alephiso | ⊢ ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 10089 | . . . . . 6 ⊢ ℵ Fn On | |
2 | isinfcard 10116 | . . . . . . . 8 ⊢ ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ 𝑥 ∈ ran ℵ) | |
3 | 2 | bicomi 223 | . . . . . . 7 ⊢ (𝑥 ∈ ran ℵ ↔ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)) |
4 | 3 | eqabi 2865 | . . . . . 6 ⊢ ran ℵ = {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
5 | df-fo 6554 | . . . . . 6 ⊢ (ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ Fn On ∧ ran ℵ = {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})) | |
6 | 1, 4, 5 | mpbir2an 710 | . . . . 5 ⊢ ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
7 | fof 6811 | . . . . 5 ⊢ (ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} → ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
9 | aleph11 10108 | . . . . . 6 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) = (ℵ‘𝑧) ↔ 𝑦 = 𝑧)) | |
10 | 9 | biimpd 228 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧)) |
11 | 10 | rgen2 3194 | . . . 4 ⊢ ∀𝑦 ∈ On ∀𝑧 ∈ On ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧) |
12 | dff13 7265 | . . . 4 ⊢ (ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧))) | |
13 | 8, 11, 12 | mpbir2an 710 | . . 3 ⊢ ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
14 | df-f1o 6555 | . . 3 ⊢ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})) | |
15 | 13, 6, 14 | mpbir2an 710 | . 2 ⊢ ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} |
16 | alephord2 10100 | . . . 4 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 ∈ 𝑧 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧))) | |
17 | epel 5585 | . . . 4 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
18 | fvex 6910 | . . . . 5 ⊢ (ℵ‘𝑧) ∈ V | |
19 | 18 | epeli 5584 | . . . 4 ⊢ ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)) |
20 | 16, 17, 19 | 3bitr4g 314 | . . 3 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))) |
21 | 20 | rgen2 3194 | . 2 ⊢ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)) |
22 | df-isom 6557 | . 2 ⊢ (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)))) | |
23 | 15, 21, 22 | mpbir2an 710 | 1 ⊢ ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 ∀wral 3058 ⊆ wss 3947 class class class wbr 5148 E cep 5581 ran crn 5679 Oncon0 6369 Fn wfn 6543 ⟶wf 6544 –1-1→wf1 6545 –onto→wfo 6546 –1-1-onto→wf1o 6547 ‘cfv 6548 Isom wiso 6549 ωcom 7870 cardccrd 9959 ℵcale 9960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9534 df-har 9581 df-card 9963 df-aleph 9964 |
This theorem is referenced by: alephiso2 42988 |
Copyright terms: Public domain | W3C validator |