MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephiso Structured version   Visualization version   GIF version

Theorem alephiso 9523
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
alephiso ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})

Proof of Theorem alephiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 9490 . . . . . 6 ℵ Fn On
2 isinfcard 9517 . . . . . . . 8 ((ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥) ↔ 𝑥 ∈ ran ℵ)
32bicomi 226 . . . . . . 7 (𝑥 ∈ ran ℵ ↔ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥))
43abbi2i 2953 . . . . . 6 ran ℵ = {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}
5 df-fo 6360 . . . . . 6 (ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ Fn On ∧ ran ℵ = {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}))
61, 4, 5mpbir2an 709 . . . . 5 ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}
7 fof 6589 . . . . 5 (ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} → ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})
86, 7ax-mp 5 . . . 4 ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}
9 aleph11 9509 . . . . . 6 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) = (ℵ‘𝑧) ↔ 𝑦 = 𝑧))
109biimpd 231 . . . . 5 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧))
1110rgen2 3203 . . . 4 𝑦 ∈ On ∀𝑧 ∈ On ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧)
12 dff13 7012 . . . 4 (ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ:On⟶{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On ((ℵ‘𝑦) = (ℵ‘𝑧) → 𝑦 = 𝑧)))
138, 11, 12mpbir2an 709 . . 3 ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}
14 df-f1o 6361 . . 3 (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ↔ (ℵ:On–1-1→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ℵ:On–onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}))
1513, 6, 14mpbir2an 709 . 2 ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}
16 alephord2 9501 . . . 4 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧)))
17 epel 5468 . . . 4 (𝑦 E 𝑧𝑦𝑧)
18 fvex 6682 . . . . 5 (ℵ‘𝑧) ∈ V
1918epeli 5467 . . . 4 ((ℵ‘𝑦) E (ℵ‘𝑧) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑧))
2016, 17, 193bitr4g 316 . . 3 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧)))
2120rgen2 3203 . 2 𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))
22 df-isom 6363 . 2 (ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) ↔ (ℵ:On–1-1-onto→{𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)} ∧ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 E 𝑧 ↔ (ℵ‘𝑦) E (ℵ‘𝑧))))
2315, 21, 22mpbir2an 709 1 ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wss 3935   class class class wbr 5065   E cep 5463  ran crn 5555  Oncon0 6190   Fn wfn 6349  wf 6350  1-1wf1 6351  ontowfo 6352  1-1-ontowf1o 6353  cfv 6354   Isom wiso 6355  ωcom 7579  cardccrd 9363  cale 9364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-oi 8973  df-har 9021  df-card 9367  df-aleph 9368
This theorem is referenced by:  alephiso2  39915
  Copyright terms: Public domain W3C validator