MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isores3 Structured version   Visualization version   GIF version

Theorem isores3 7335
Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Assertion
Ref Expression
isores3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))

Proof of Theorem isores3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 6832 . . . . . . 7 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
2 f1ores 6847 . . . . . . . 8 ((𝐻:𝐴1-1𝐵𝐾𝐴) → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾))
32expcom 413 . . . . . . 7 (𝐾𝐴 → (𝐻:𝐴1-1𝐵 → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾)))
41, 3syl5 34 . . . . . 6 (𝐾𝐴 → (𝐻:𝐴1-1-onto𝐵 → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾)))
5 ssralv 4050 . . . . . . 7 (𝐾𝐴 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
6 ssralv 4050 . . . . . . . . . 10 (𝐾𝐴 → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
76adantr 480 . . . . . . . . 9 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
8 fvres 6910 . . . . . . . . . . . . . 14 (𝑎𝐾 → ((𝐻𝐾)‘𝑎) = (𝐻𝑎))
9 fvres 6910 . . . . . . . . . . . . . 14 (𝑏𝐾 → ((𝐻𝐾)‘𝑏) = (𝐻𝑏))
108, 9breqan12d 5164 . . . . . . . . . . . . 13 ((𝑎𝐾𝑏𝐾) → (((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1110adantll 711 . . . . . . . . . . . 12 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → (((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1211bibi2d 342 . . . . . . . . . . 11 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → ((𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏)) ↔ (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
1312biimprd 247 . . . . . . . . . 10 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → ((𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
1413ralimdva 3166 . . . . . . . . 9 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
157, 14syld 47 . . . . . . . 8 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
1615ralimdva 3166 . . . . . . 7 (𝐾𝐴 → (∀𝑎𝐾𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
175, 16syld 47 . . . . . 6 (𝐾𝐴 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
184, 17anim12d 608 . . . . 5 (𝐾𝐴 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))) → ((𝐻𝐾):𝐾1-1-onto→(𝐻𝐾) ∧ ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏)))))
19 df-isom 6552 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
20 df-isom 6552 . . . . 5 ((𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾)) ↔ ((𝐻𝐾):𝐾1-1-onto→(𝐻𝐾) ∧ ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
2118, 19, 203imtr4g 296 . . . 4 (𝐾𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾))))
2221impcom 407 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾)))
23 isoeq5 7321 . . 3 (𝑋 = (𝐻𝐾) → ((𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋) ↔ (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾))))
2422, 23syl5ibrcom 246 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴) → (𝑋 = (𝐻𝐾) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋)))
25243impia 1116 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wss 3948   class class class wbr 5148  cres 5678  cima 5679  1-1wf1 6540  1-1-ontowf1o 6542  cfv 6543   Isom wiso 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552
This theorem is referenced by:  cantnfp1lem3  9681  fpwwe2lem8  10639  efcvx  26212
  Copyright terms: Public domain W3C validator