MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isores3 Structured version   Visualization version   GIF version

Theorem isores3 7080
Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Assertion
Ref Expression
isores3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))

Proof of Theorem isores3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 6607 . . . . . . 7 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
2 f1ores 6622 . . . . . . . 8 ((𝐻:𝐴1-1𝐵𝐾𝐴) → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾))
32expcom 416 . . . . . . 7 (𝐾𝐴 → (𝐻:𝐴1-1𝐵 → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾)))
41, 3syl5 34 . . . . . 6 (𝐾𝐴 → (𝐻:𝐴1-1-onto𝐵 → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾)))
5 ssralv 4031 . . . . . . 7 (𝐾𝐴 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
6 ssralv 4031 . . . . . . . . . 10 (𝐾𝐴 → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
76adantr 483 . . . . . . . . 9 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
8 fvres 6682 . . . . . . . . . . . . . 14 (𝑎𝐾 → ((𝐻𝐾)‘𝑎) = (𝐻𝑎))
9 fvres 6682 . . . . . . . . . . . . . 14 (𝑏𝐾 → ((𝐻𝐾)‘𝑏) = (𝐻𝑏))
108, 9breqan12d 5073 . . . . . . . . . . . . 13 ((𝑎𝐾𝑏𝐾) → (((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1110adantll 712 . . . . . . . . . . . 12 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → (((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1211bibi2d 345 . . . . . . . . . . 11 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → ((𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏)) ↔ (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
1312biimprd 250 . . . . . . . . . 10 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → ((𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
1413ralimdva 3175 . . . . . . . . 9 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
157, 14syld 47 . . . . . . . 8 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
1615ralimdva 3175 . . . . . . 7 (𝐾𝐴 → (∀𝑎𝐾𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
175, 16syld 47 . . . . . 6 (𝐾𝐴 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
184, 17anim12d 610 . . . . 5 (𝐾𝐴 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))) → ((𝐻𝐾):𝐾1-1-onto→(𝐻𝐾) ∧ ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏)))))
19 df-isom 6357 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
20 df-isom 6357 . . . . 5 ((𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾)) ↔ ((𝐻𝐾):𝐾1-1-onto→(𝐻𝐾) ∧ ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
2118, 19, 203imtr4g 298 . . . 4 (𝐾𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾))))
2221impcom 410 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾)))
23 isoeq5 7066 . . 3 (𝑋 = (𝐻𝐾) → ((𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋) ↔ (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾))))
2422, 23syl5ibrcom 249 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴) → (𝑋 = (𝐻𝐾) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋)))
25243impia 1112 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  wss 3934   class class class wbr 5057  cres 5550  cima 5551  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348   Isom wiso 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357
This theorem is referenced by:  cantnfp1lem3  9135  fpwwe2lem9  10052  efcvx  25029
  Copyright terms: Public domain W3C validator