Step | Hyp | Ref
| Expression |
1 | | f1of1 6699 |
. . . . . . 7
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) |
2 | | f1ores 6714 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝐾 ⊆ 𝐴) → (𝐻 ↾ 𝐾):𝐾–1-1-onto→(𝐻 “ 𝐾)) |
3 | 2 | expcom 413 |
. . . . . . 7
⊢ (𝐾 ⊆ 𝐴 → (𝐻:𝐴–1-1→𝐵 → (𝐻 ↾ 𝐾):𝐾–1-1-onto→(𝐻 “ 𝐾))) |
4 | 1, 3 | syl5 34 |
. . . . . 6
⊢ (𝐾 ⊆ 𝐴 → (𝐻:𝐴–1-1-onto→𝐵 → (𝐻 ↾ 𝐾):𝐾–1-1-onto→(𝐻 “ 𝐾))) |
5 | | ssralv 3983 |
. . . . . . 7
⊢ (𝐾 ⊆ 𝐴 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) → ∀𝑎 ∈ 𝐾 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) |
6 | | ssralv 3983 |
. . . . . . . . . 10
⊢ (𝐾 ⊆ 𝐴 → (∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) → ∀𝑏 ∈ 𝐾 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) |
7 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐾 ⊆ 𝐴 ∧ 𝑎 ∈ 𝐾) → (∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) → ∀𝑏 ∈ 𝐾 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) |
8 | | fvres 6775 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ 𝐾 → ((𝐻 ↾ 𝐾)‘𝑎) = (𝐻‘𝑎)) |
9 | | fvres 6775 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝐾 → ((𝐻 ↾ 𝐾)‘𝑏) = (𝐻‘𝑏)) |
10 | 8, 9 | breqan12d 5086 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾) → (((𝐻 ↾ 𝐾)‘𝑎)𝑆((𝐻 ↾ 𝐾)‘𝑏) ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
11 | 10 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝐾 ⊆ 𝐴 ∧ 𝑎 ∈ 𝐾) ∧ 𝑏 ∈ 𝐾) → (((𝐻 ↾ 𝐾)‘𝑎)𝑆((𝐻 ↾ 𝐾)‘𝑏) ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
12 | 11 | bibi2d 342 |
. . . . . . . . . . 11
⊢ (((𝐾 ⊆ 𝐴 ∧ 𝑎 ∈ 𝐾) ∧ 𝑏 ∈ 𝐾) → ((𝑎𝑅𝑏 ↔ ((𝐻 ↾ 𝐾)‘𝑎)𝑆((𝐻 ↾ 𝐾)‘𝑏)) ↔ (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) |
13 | 12 | biimprd 247 |
. . . . . . . . . 10
⊢ (((𝐾 ⊆ 𝐴 ∧ 𝑎 ∈ 𝐾) ∧ 𝑏 ∈ 𝐾) → ((𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) → (𝑎𝑅𝑏 ↔ ((𝐻 ↾ 𝐾)‘𝑎)𝑆((𝐻 ↾ 𝐾)‘𝑏)))) |
14 | 13 | ralimdva 3102 |
. . . . . . . . 9
⊢ ((𝐾 ⊆ 𝐴 ∧ 𝑎 ∈ 𝐾) → (∀𝑏 ∈ 𝐾 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) → ∀𝑏 ∈ 𝐾 (𝑎𝑅𝑏 ↔ ((𝐻 ↾ 𝐾)‘𝑎)𝑆((𝐻 ↾ 𝐾)‘𝑏)))) |
15 | 7, 14 | syld 47 |
. . . . . . . 8
⊢ ((𝐾 ⊆ 𝐴 ∧ 𝑎 ∈ 𝐾) → (∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) → ∀𝑏 ∈ 𝐾 (𝑎𝑅𝑏 ↔ ((𝐻 ↾ 𝐾)‘𝑎)𝑆((𝐻 ↾ 𝐾)‘𝑏)))) |
16 | 15 | ralimdva 3102 |
. . . . . . 7
⊢ (𝐾 ⊆ 𝐴 → (∀𝑎 ∈ 𝐾 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) → ∀𝑎 ∈ 𝐾 ∀𝑏 ∈ 𝐾 (𝑎𝑅𝑏 ↔ ((𝐻 ↾ 𝐾)‘𝑎)𝑆((𝐻 ↾ 𝐾)‘𝑏)))) |
17 | 5, 16 | syld 47 |
. . . . . 6
⊢ (𝐾 ⊆ 𝐴 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) → ∀𝑎 ∈ 𝐾 ∀𝑏 ∈ 𝐾 (𝑎𝑅𝑏 ↔ ((𝐻 ↾ 𝐾)‘𝑎)𝑆((𝐻 ↾ 𝐾)‘𝑏)))) |
18 | 4, 17 | anim12d 608 |
. . . . 5
⊢ (𝐾 ⊆ 𝐴 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) → ((𝐻 ↾ 𝐾):𝐾–1-1-onto→(𝐻 “ 𝐾) ∧ ∀𝑎 ∈ 𝐾 ∀𝑏 ∈ 𝐾 (𝑎𝑅𝑏 ↔ ((𝐻 ↾ 𝐾)‘𝑎)𝑆((𝐻 ↾ 𝐾)‘𝑏))))) |
19 | | df-isom 6427 |
. . . . 5
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) |
20 | | df-isom 6427 |
. . . . 5
⊢ ((𝐻 ↾ 𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻 “ 𝐾)) ↔ ((𝐻 ↾ 𝐾):𝐾–1-1-onto→(𝐻 “ 𝐾) ∧ ∀𝑎 ∈ 𝐾 ∀𝑏 ∈ 𝐾 (𝑎𝑅𝑏 ↔ ((𝐻 ↾ 𝐾)‘𝑎)𝑆((𝐻 ↾ 𝐾)‘𝑏)))) |
21 | 18, 19, 20 | 3imtr4g 295 |
. . . 4
⊢ (𝐾 ⊆ 𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 ↾ 𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻 “ 𝐾)))) |
22 | 21 | impcom 407 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾 ⊆ 𝐴) → (𝐻 ↾ 𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻 “ 𝐾))) |
23 | | isoeq5 7172 |
. . 3
⊢ (𝑋 = (𝐻 “ 𝐾) → ((𝐻 ↾ 𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋) ↔ (𝐻 ↾ 𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻 “ 𝐾)))) |
24 | 22, 23 | syl5ibrcom 246 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾 ⊆ 𝐴) → (𝑋 = (𝐻 “ 𝐾) → (𝐻 ↾ 𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))) |
25 | 24 | 3impia 1115 |
1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾 ⊆ 𝐴 ∧ 𝑋 = (𝐻 “ 𝐾)) → (𝐻 ↾ 𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋)) |