MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isores3 Structured version   Visualization version   GIF version

Theorem isores3 7269
Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Assertion
Ref Expression
isores3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))

Proof of Theorem isores3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 6762 . . . . . . 7 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
2 f1ores 6777 . . . . . . . 8 ((𝐻:𝐴1-1𝐵𝐾𝐴) → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾))
32expcom 413 . . . . . . 7 (𝐾𝐴 → (𝐻:𝐴1-1𝐵 → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾)))
41, 3syl5 34 . . . . . 6 (𝐾𝐴 → (𝐻:𝐴1-1-onto𝐵 → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾)))
5 ssralv 3998 . . . . . . 7 (𝐾𝐴 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
6 ssralv 3998 . . . . . . . . . 10 (𝐾𝐴 → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
76adantr 480 . . . . . . . . 9 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
8 fvres 6841 . . . . . . . . . . . . . 14 (𝑎𝐾 → ((𝐻𝐾)‘𝑎) = (𝐻𝑎))
9 fvres 6841 . . . . . . . . . . . . . 14 (𝑏𝐾 → ((𝐻𝐾)‘𝑏) = (𝐻𝑏))
108, 9breqan12d 5105 . . . . . . . . . . . . 13 ((𝑎𝐾𝑏𝐾) → (((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1110adantll 714 . . . . . . . . . . . 12 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → (((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1211bibi2d 342 . . . . . . . . . . 11 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → ((𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏)) ↔ (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
1312biimprd 248 . . . . . . . . . 10 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → ((𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
1413ralimdva 3144 . . . . . . . . 9 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
157, 14syld 47 . . . . . . . 8 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
1615ralimdva 3144 . . . . . . 7 (𝐾𝐴 → (∀𝑎𝐾𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
175, 16syld 47 . . . . . 6 (𝐾𝐴 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
184, 17anim12d 609 . . . . 5 (𝐾𝐴 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))) → ((𝐻𝐾):𝐾1-1-onto→(𝐻𝐾) ∧ ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏)))))
19 df-isom 6490 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
20 df-isom 6490 . . . . 5 ((𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾)) ↔ ((𝐻𝐾):𝐾1-1-onto→(𝐻𝐾) ∧ ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
2118, 19, 203imtr4g 296 . . . 4 (𝐾𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾))))
2221impcom 407 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾)))
23 isoeq5 7255 . . 3 (𝑋 = (𝐻𝐾) → ((𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋) ↔ (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾))))
2422, 23syl5ibrcom 247 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴) → (𝑋 = (𝐻𝐾) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋)))
25243impia 1117 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wss 3897   class class class wbr 5089  cres 5616  cima 5617  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490
This theorem is referenced by:  cantnfp1lem3  9570  fpwwe2lem8  10529  efcvx  26386
  Copyright terms: Public domain W3C validator