![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1owe | Structured version Visualization version GIF version |
Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
f1owe.1 | ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} |
Ref | Expression |
---|---|
f1owe | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6843 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
2 | 1 | breq1d 5116 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑦))) |
3 | fveq2 6843 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) | |
4 | 3 | breq2d 5118 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝐹‘𝑧)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
5 | f1owe.1 | . . . . 5 ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} | |
6 | 2, 4, 5 | brabg 5497 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
7 | 6 | rgen2 3191 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤)) |
8 | df-isom 6506 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹:𝐴–1-1-onto→𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤)))) | |
9 | isowe 7295 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) | |
10 | 8, 9 | sylbir 234 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
11 | 7, 10 | mpan2 690 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
12 | 11 | biimprd 248 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∀wral 3061 class class class wbr 5106 {copab 5168 We wwe 5588 –1-1-onto→wf1o 6496 ‘cfv 6497 Isom wiso 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-id 5532 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 |
This theorem is referenced by: wemapwe 9638 dfac8b 9972 ac10ct 9975 dnwech 41418 |
Copyright terms: Public domain | W3C validator |