MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1owe Structured version   Visualization version   GIF version

Theorem f1owe 7351
Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.)
Hypothesis
Ref Expression
f1owe.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹𝑥)𝑆(𝐹𝑦)}
Assertion
Ref Expression
f1owe (𝐹:𝐴1-1-onto𝐵 → (𝑆 We 𝐵𝑅 We 𝐴))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem f1owe
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . . 6 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21breq1d 5134 . . . . 5 (𝑥 = 𝑧 → ((𝐹𝑥)𝑆(𝐹𝑦) ↔ (𝐹𝑧)𝑆(𝐹𝑦)))
3 fveq2 6881 . . . . . 6 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
43breq2d 5136 . . . . 5 (𝑦 = 𝑤 → ((𝐹𝑧)𝑆(𝐹𝑦) ↔ (𝐹𝑧)𝑆(𝐹𝑤)))
5 f1owe.1 . . . . 5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹𝑥)𝑆(𝐹𝑦)}
62, 4, 5brabg 5519 . . . 4 ((𝑧𝐴𝑤𝐴) → (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤)))
76rgen2 3185 . . 3 𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤))
8 df-isom 6545 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹:𝐴1-1-onto𝐵 ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤))))
9 isowe 7347 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴𝑆 We 𝐵))
108, 9sylbir 235 . . 3 ((𝐹:𝐴1-1-onto𝐵 ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤))) → (𝑅 We 𝐴𝑆 We 𝐵))
117, 10mpan2 691 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝑅 We 𝐴𝑆 We 𝐵))
1211biimprd 248 1 (𝐹:𝐴1-1-onto𝐵 → (𝑆 We 𝐵𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3052   class class class wbr 5124  {copab 5186   We wwe 5610  1-1-ontowf1o 6535  cfv 6536   Isom wiso 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545
This theorem is referenced by:  wemapwe  9716  dfac8b  10050  ac10ct  10053  dnwech  43047
  Copyright terms: Public domain W3C validator