MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1owe Structured version   Visualization version   GIF version

Theorem f1owe 7282
Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.)
Hypothesis
Ref Expression
f1owe.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹𝑥)𝑆(𝐹𝑦)}
Assertion
Ref Expression
f1owe (𝐹:𝐴1-1-onto𝐵 → (𝑆 We 𝐵𝑅 We 𝐴))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem f1owe
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . . . 6 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21breq1d 5096 . . . . 5 (𝑥 = 𝑧 → ((𝐹𝑥)𝑆(𝐹𝑦) ↔ (𝐹𝑧)𝑆(𝐹𝑦)))
3 fveq2 6817 . . . . . 6 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
43breq2d 5098 . . . . 5 (𝑦 = 𝑤 → ((𝐹𝑧)𝑆(𝐹𝑦) ↔ (𝐹𝑧)𝑆(𝐹𝑤)))
5 f1owe.1 . . . . 5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹𝑥)𝑆(𝐹𝑦)}
62, 4, 5brabg 5474 . . . 4 ((𝑧𝐴𝑤𝐴) → (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤)))
76rgen2 3172 . . 3 𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤))
8 df-isom 6485 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹:𝐴1-1-onto𝐵 ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤))))
9 isowe 7278 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴𝑆 We 𝐵))
108, 9sylbir 235 . . 3 ((𝐹:𝐴1-1-onto𝐵 ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤))) → (𝑅 We 𝐴𝑆 We 𝐵))
117, 10mpan2 691 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝑅 We 𝐴𝑆 We 𝐵))
1211biimprd 248 1 (𝐹:𝐴1-1-onto𝐵 → (𝑆 We 𝐵𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wral 3047   class class class wbr 5086  {copab 5148   We wwe 5563  1-1-ontowf1o 6475  cfv 6476   Isom wiso 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485
This theorem is referenced by:  wemapwe  9582  dfac8b  9917  ac10ct  9920  dnwech  43081
  Copyright terms: Public domain W3C validator