![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1owe | Structured version Visualization version GIF version |
Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
f1owe.1 | ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} |
Ref | Expression |
---|---|
f1owe | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
2 | 1 | breq1d 5158 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑦))) |
3 | fveq2 6891 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) | |
4 | 3 | breq2d 5160 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝐹‘𝑧)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
5 | f1owe.1 | . . . . 5 ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} | |
6 | 2, 4, 5 | brabg 5539 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
7 | 6 | rgen2 3197 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤)) |
8 | df-isom 6552 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹:𝐴–1-1-onto→𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤)))) | |
9 | isowe 7345 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) | |
10 | 8, 9 | sylbir 234 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
11 | 7, 10 | mpan2 689 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
12 | 11 | biimprd 247 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∀wral 3061 class class class wbr 5148 {copab 5210 We wwe 5630 –1-1-onto→wf1o 6542 ‘cfv 6543 Isom wiso 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 |
This theorem is referenced by: wemapwe 9691 dfac8b 10025 ac10ct 10028 dnwech 41780 |
Copyright terms: Public domain | W3C validator |