|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > f1owe | Structured version Visualization version GIF version | ||
| Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.) | 
| Ref | Expression | 
|---|---|
| f1owe.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} | 
| Ref | Expression | 
|---|---|
| f1owe | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 6905 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
| 2 | 1 | breq1d 5152 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑦))) | 
| 3 | fveq2 6905 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) | |
| 4 | 3 | breq2d 5154 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝐹‘𝑧)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) | 
| 5 | f1owe.1 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} | |
| 6 | 2, 4, 5 | brabg 5543 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) | 
| 7 | 6 | rgen2 3198 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤)) | 
| 8 | df-isom 6569 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹:𝐴–1-1-onto→𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤)))) | |
| 9 | isowe 7370 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) | |
| 10 | 8, 9 | sylbir 235 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) | 
| 11 | 7, 10 | mpan2 691 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) | 
| 12 | 11 | biimprd 248 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∀wral 3060 class class class wbr 5142 {copab 5204 We wwe 5635 –1-1-onto→wf1o 6559 ‘cfv 6560 Isom wiso 6561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 | 
| This theorem is referenced by: wemapwe 9738 dfac8b 10072 ac10ct 10075 dnwech 43065 | 
| Copyright terms: Public domain | W3C validator |