| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1owe | Structured version Visualization version GIF version | ||
| Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| f1owe.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} |
| Ref | Expression |
|---|---|
| f1owe | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
| 2 | 1 | breq1d 5096 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑦))) |
| 3 | fveq2 6817 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) | |
| 4 | 3 | breq2d 5098 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝐹‘𝑧)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
| 5 | f1owe.1 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} | |
| 6 | 2, 4, 5 | brabg 5474 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) |
| 7 | 6 | rgen2 3172 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤)) |
| 8 | df-isom 6485 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹:𝐴–1-1-onto→𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤)))) | |
| 9 | isowe 7278 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) | |
| 10 | 8, 9 | sylbir 235 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 ↔ (𝐹‘𝑧)𝑆(𝐹‘𝑤))) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
| 11 | 7, 10 | mpan2 691 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
| 12 | 11 | biimprd 248 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∀wral 3047 class class class wbr 5086 {copab 5148 We wwe 5563 –1-1-onto→wf1o 6475 ‘cfv 6476 Isom wiso 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 |
| This theorem is referenced by: wemapwe 9582 dfac8b 9917 ac10ct 9920 dnwech 43081 |
| Copyright terms: Public domain | W3C validator |