MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1owe Structured version   Visualization version   GIF version

Theorem f1owe 7374
Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.)
Hypothesis
Ref Expression
f1owe.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹𝑥)𝑆(𝐹𝑦)}
Assertion
Ref Expression
f1owe (𝐹:𝐴1-1-onto𝐵 → (𝑆 We 𝐵𝑅 We 𝐴))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem f1owe
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6905 . . . . . 6 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21breq1d 5152 . . . . 5 (𝑥 = 𝑧 → ((𝐹𝑥)𝑆(𝐹𝑦) ↔ (𝐹𝑧)𝑆(𝐹𝑦)))
3 fveq2 6905 . . . . . 6 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
43breq2d 5154 . . . . 5 (𝑦 = 𝑤 → ((𝐹𝑧)𝑆(𝐹𝑦) ↔ (𝐹𝑧)𝑆(𝐹𝑤)))
5 f1owe.1 . . . . 5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹𝑥)𝑆(𝐹𝑦)}
62, 4, 5brabg 5543 . . . 4 ((𝑧𝐴𝑤𝐴) → (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤)))
76rgen2 3198 . . 3 𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤))
8 df-isom 6569 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹:𝐴1-1-onto𝐵 ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤))))
9 isowe 7370 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴𝑆 We 𝐵))
108, 9sylbir 235 . . 3 ((𝐹:𝐴1-1-onto𝐵 ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤))) → (𝑅 We 𝐴𝑆 We 𝐵))
117, 10mpan2 691 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝑅 We 𝐴𝑆 We 𝐵))
1211biimprd 248 1 (𝐹:𝐴1-1-onto𝐵 → (𝑆 We 𝐵𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wral 3060   class class class wbr 5142  {copab 5204   We wwe 5635  1-1-ontowf1o 6559  cfv 6560   Isom wiso 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569
This theorem is referenced by:  wemapwe  9738  dfac8b  10072  ac10ct  10075  dnwech  43065
  Copyright terms: Public domain W3C validator