| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnasrn | Structured version Visualization version GIF version | ||
| Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dfmpt.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fnasrn | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmpt.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | dfmpt 7078 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| 3 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) | |
| 4 | 3 | rnmpt 5899 | . . . 4 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉} |
| 5 | velsn 4593 | . . . . . 6 ⊢ (𝑦 ∈ {〈𝑥, 𝐵〉} ↔ 𝑦 = 〈𝑥, 𝐵〉) | |
| 6 | 5 | rexbii 3076 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉) |
| 7 | 6 | abbii 2796 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉} |
| 8 | 4, 7 | eqtr4i 2755 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} |
| 9 | df-iun 4943 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} | |
| 10 | 8, 9 | eqtr4i 2755 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| 11 | 2, 10 | eqtr4i 2755 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3436 {csn 4577 〈cop 4583 ∪ ciun 4941 ↦ cmpt 5173 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 |
| This theorem is referenced by: idref 7080 resfunexg 7151 gruf 10705 |
| Copyright terms: Public domain | W3C validator |