Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnasrn | Structured version Visualization version GIF version |
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfmpt.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fnasrn | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝐵⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmpt.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | dfmpt 7073 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩} |
3 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝐵⟩) = (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝐵⟩) | |
4 | 3 | rnmpt 5897 | . . . 4 ⊢ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝐵⟩) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝐵⟩} |
5 | velsn 4590 | . . . . . 6 ⊢ (𝑦 ∈ {⟨𝑥, 𝐵⟩} ↔ 𝑦 = ⟨𝑥, 𝐵⟩) | |
6 | 5 | rexbii 3093 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩} ↔ ∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝐵⟩) |
7 | 6 | abbii 2806 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ⟨𝑥, 𝐵⟩} |
8 | 4, 7 | eqtr4i 2767 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝐵⟩) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}} |
9 | df-iun 4944 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}} | |
10 | 8, 9 | eqtr4i 2767 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝐵⟩) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩} |
11 | 2, 10 | eqtr4i 2767 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝐵⟩) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 {cab 2713 ∃wrex 3070 Vcvv 3441 {csn 4574 ⟨cop 4580 ∪ ciun 4942 ↦ cmpt 5176 ran crn 5622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 |
This theorem is referenced by: idref 7075 resfunexg 7148 gruf 10669 |
Copyright terms: Public domain | W3C validator |