| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnasrn | Structured version Visualization version GIF version | ||
| Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dfmpt.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fnasrn | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmpt.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | dfmpt 7119 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| 3 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) | |
| 4 | 3 | rnmpt 5924 | . . . 4 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉} |
| 5 | velsn 4608 | . . . . . 6 ⊢ (𝑦 ∈ {〈𝑥, 𝐵〉} ↔ 𝑦 = 〈𝑥, 𝐵〉) | |
| 6 | 5 | rexbii 3077 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉) |
| 7 | 6 | abbii 2797 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉} |
| 8 | 4, 7 | eqtr4i 2756 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} |
| 9 | df-iun 4960 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} | |
| 10 | 8, 9 | eqtr4i 2756 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| 11 | 2, 10 | eqtr4i 2756 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 {csn 4592 〈cop 4598 ∪ ciun 4958 ↦ cmpt 5191 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 |
| This theorem is referenced by: idref 7121 resfunexg 7192 gruf 10771 |
| Copyright terms: Public domain | W3C validator |