Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfnbgr5 Structured version   Visualization version   GIF version

Theorem dfnbgr5 47831
Description: Alternate definition of the (open) neighborhood of a vertex as a semiclosed neighborhood without itself. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfsclnbgr2.v 𝑉 = (Vtx‘𝐺)
dfsclnbgr2.s 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
dfsclnbgr2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
dfnbgr5 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑆 ∖ {𝑁}))
Distinct variable groups:   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑒,𝐸,𝑛   𝑒,𝐺,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)

Proof of Theorem dfnbgr5
StepHypRef Expression
1 rabdif 4301 . . 3 ({𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} ∖ {𝑁}) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}
21eqcomi 2745 . 2 {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} = ({𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} ∖ {𝑁})
3 dfsclnbgr2.v . . 3 𝑉 = (Vtx‘𝐺)
4 dfsclnbgr2.e . . 3 𝐸 = (Edg‘𝐺)
53, 4dfnbgr2 29321 . 2 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
6 dfsclnbgr2.s . . . 4 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
73, 6, 4dfsclnbgr2 47826 . . 3 (𝑁𝑉𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
87difeq1d 4105 . 2 (𝑁𝑉 → (𝑆 ∖ {𝑁}) = ({𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} ∖ {𝑁}))
92, 5, 83eqtr4a 2797 1 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑆 ∖ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  {crab 3420  cdif 3928  wss 3931  {csn 4606  {cpr 4608  cfv 6536  (class class class)co 7410  Vtxcvtx 28980  Edgcedg 29031   NeighbVtx cnbgr 29316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-nbgr 29317
This theorem is referenced by:  dfnbgrss  47832
  Copyright terms: Public domain W3C validator