Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfnbgr5 Structured version   Visualization version   GIF version

Theorem dfnbgr5 47454
Description: Alternate definition of the (open) neighborhood of a vertex as a semiclosed neighborhood without itself. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfsclnbgr2.v 𝑉 = (Vtx‘𝐺)
dfsclnbgr2.s 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
dfsclnbgr2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
dfnbgr5 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑆 ∖ {𝑁}))
Distinct variable groups:   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑒,𝐸,𝑛   𝑒,𝐺,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)

Proof of Theorem dfnbgr5
StepHypRef Expression
1 rabdif 4310 . . 3 ({𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} ∖ {𝑁}) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}
21eqcomi 2735 . 2 {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} = ({𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} ∖ {𝑁})
3 dfsclnbgr2.v . . 3 𝑉 = (Vtx‘𝐺)
4 dfsclnbgr2.e . . 3 𝐸 = (Edg‘𝐺)
53, 4dfnbgr2 29270 . 2 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
6 dfsclnbgr2.s . . . 4 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
73, 6, 4dfsclnbgr2 47449 . . 3 (𝑁𝑉𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
87difeq1d 4117 . 2 (𝑁𝑉 → (𝑆 ∖ {𝑁}) = ({𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} ∖ {𝑁}))
92, 5, 83eqtr4a 2792 1 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑆 ∖ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wrex 3060  {crab 3419  cdif 3943  wss 3946  {csn 4623  {cpr 4625  cfv 6546  (class class class)co 7416  Vtxcvtx 28929  Edgcedg 28980   NeighbVtx cnbgr 29265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-iota 6498  df-fun 6548  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-nbgr 29266
This theorem is referenced by:  dfnbgrss  47455
  Copyright terms: Public domain W3C validator