Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfclnbgr2 Structured version   Visualization version   GIF version

Theorem dfclnbgr2 47814
Description: Alternate definition of the closed neighborhood of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 7-May-2025.)
Hypotheses
Ref Expression
clnbgrval.v 𝑉 = (Vtx‘𝐺)
clnbgrval.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
dfclnbgr2 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺,𝑛   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛
Allowed substitution hint:   𝐸(𝑛)

Proof of Theorem dfclnbgr2
StepHypRef Expression
1 clnbgrval.v . . 3 𝑉 = (Vtx‘𝐺)
2 clnbgrval.e . . 3 𝐸 = (Edg‘𝐺)
31, 2clnbgrval 47813 . 2 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}))
4 prssg 4785 . . . . . . 7 ((𝑁𝑉𝑛 ∈ V) → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
54elvd 3456 . . . . . 6 (𝑁𝑉 → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
65bicomd 223 . . . . 5 (𝑁𝑉 → ({𝑁, 𝑛} ⊆ 𝑒 ↔ (𝑁𝑒𝑛𝑒)))
76rexbidv 3158 . . . 4 (𝑁𝑉 → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)))
87rabbidv 3416 . . 3 (𝑁𝑉 → {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} = {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
98uneq2d 4133 . 2 (𝑁𝑉 → ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}))
103, 9eqtrd 2765 1 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  Vcvv 3450  cun 3914  wss 3916  {csn 4591  {cpr 4593  cfv 6513  (class class class)co 7389  Vtxcvtx 28929  Edgcedg 28980   ClNeighbVtx cclnbgr 47809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-clnbgr 47810
This theorem is referenced by:  dfclnbgr4  47815  dfclnbgr5  47840  dfclnbgr6  47846
  Copyright terms: Public domain W3C validator