| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff14i | Structured version Visualization version GIF version | ||
| Description: A one-to-one function maps different arguments onto different values. Implication of the alternate definition dff14a 7262. (Contributed by AV, 30-Oct-2025.) |
| Ref | Expression |
|---|---|
| dff14i | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 7248 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) | |
| 2 | 1 | necon3d 2953 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋 ≠ 𝑌 → (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
| 3 | 2 | exp32 420 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝑋 ∈ 𝐴 → (𝑌 ∈ 𝐴 → (𝑋 ≠ 𝑌 → (𝐹‘𝑋) ≠ (𝐹‘𝑌))))) |
| 4 | 3 | 3imp2 1350 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 ≠ wne 2932 –1-1→wf1 6527 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fv 6538 |
| This theorem is referenced by: 2f1fvneq 7252 upgrimpthslem2 47869 |
| Copyright terms: Public domain | W3C validator |