| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff14i | Structured version Visualization version GIF version | ||
| Description: A one-to-one function maps different arguments onto different values. Implication of the alternate definition dff14a 7227. (Contributed by AV, 30-Oct-2025.) |
| Ref | Expression |
|---|---|
| dff14i | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 7213 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) | |
| 2 | 1 | necon3d 2946 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋 ≠ 𝑌 → (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
| 3 | 2 | exp32 420 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝑋 ∈ 𝐴 → (𝑌 ∈ 𝐴 → (𝑋 ≠ 𝑌 → (𝐹‘𝑋) ≠ (𝐹‘𝑌))))) |
| 4 | 3 | 3imp2 1350 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 –1-1→wf1 6496 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fv 6507 |
| This theorem is referenced by: 2f1fvneq 7217 upgrimpthslem2 47901 |
| Copyright terms: Public domain | W3C validator |