| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff14i | Structured version Visualization version GIF version | ||
| Description: A one-to-one function maps different arguments onto different values. Implication of the alternate definition dff14a 7204. (Contributed by AV, 30-Oct-2025.) |
| Ref | Expression |
|---|---|
| dff14i | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 7190 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) | |
| 2 | 1 | necon3d 2949 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋 ≠ 𝑌 → (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
| 3 | 2 | exp32 420 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝑋 ∈ 𝐴 → (𝑌 ∈ 𝐴 → (𝑋 ≠ 𝑌 → (𝐹‘𝑋) ≠ (𝐹‘𝑌))))) |
| 4 | 3 | 3imp2 1350 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 –1-1→wf1 6478 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fv 6489 |
| This theorem is referenced by: 2f1fvneq 7194 upgrimpthslem2 48007 |
| Copyright terms: Public domain | W3C validator |