Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimpthslem2 Structured version   Visualization version   GIF version

Theorem upgrimpthslem2 47869
Description: Lemma 2 for upgrimpths 47870. (Contributed by AV, 31-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimpths.p (𝜑𝐹(Paths‘𝐺)𝑃)
Assertion
Ref Expression
upgrimpthslem2 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘0) ∧ ¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘(♯‘𝐹))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼   𝑥,𝐽   𝑥,𝑃   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐻(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem upgrimpthslem2
StepHypRef Expression
1 upgrimwlk.n . . . . . 6 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
2 eqid 2735 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2735 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
42, 3grimf1o 47845 . . . . . 6 (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
5 f1of1 6816 . . . . . 6 (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
61, 4, 53syl 18 . . . . 5 (𝜑𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
76adantr 480 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
8 upgrimpths.p . . . . . 6 (𝜑𝐹(Paths‘𝐺)𝑃)
9 pthiswlk 29653 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
102wlkp 29542 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
1110adantr 480 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑋 ∈ (1..^(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
12 fzo0ss1 13704 . . . . . . . . . . 11 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
13 fzossfz 13693 . . . . . . . . . . 11 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
1412, 13sstri 3968 . . . . . . . . . 10 (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
1514sseli 3954 . . . . . . . . 9 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 ∈ (0...(♯‘𝐹)))
1615adantl 481 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ∈ (0...(♯‘𝐹)))
1711, 16ffvelcdmd 7074 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃𝑋) ∈ (Vtx‘𝐺))
1817ex 412 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝑋 ∈ (1..^(♯‘𝐹)) → (𝑃𝑋) ∈ (Vtx‘𝐺)))
198, 9, 183syl 18 . . . . 5 (𝜑 → (𝑋 ∈ (1..^(♯‘𝐹)) → (𝑃𝑋) ∈ (Vtx‘𝐺)))
2019imp 406 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃𝑋) ∈ (Vtx‘𝐺))
21 wlkcl 29541 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
22 0elfz 13639 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
2321, 22syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → 0 ∈ (0...(♯‘𝐹)))
2410, 23ffvelcdmd 7074 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝑃‘0) ∈ (Vtx‘𝐺))
258, 9, 243syl 18 . . . . 5 (𝜑 → (𝑃‘0) ∈ (Vtx‘𝐺))
2625adantr 480 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃‘0) ∈ (Vtx‘𝐺))
278adantr 480 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝐹(Paths‘𝐺)𝑃)
28 simpr 484 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ∈ (1..^(♯‘𝐹)))
298, 9, 213syl 18 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
3029, 22syl 17 . . . . . 6 (𝜑 → 0 ∈ (0...(♯‘𝐹)))
3130adantr 480 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 0 ∈ (0...(♯‘𝐹)))
32 elfzole1 13682 . . . . . . 7 (𝑋 ∈ (1..^(♯‘𝐹)) → 1 ≤ 𝑋)
33 elfzoelz 13674 . . . . . . . . 9 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 ∈ ℤ)
34 zgt0ge1 12645 . . . . . . . . 9 (𝑋 ∈ ℤ → (0 < 𝑋 ↔ 1 ≤ 𝑋))
3533, 34syl 17 . . . . . . . 8 (𝑋 ∈ (1..^(♯‘𝐹)) → (0 < 𝑋 ↔ 1 ≤ 𝑋))
36 simpr 484 . . . . . . . . . 10 ((𝑋 ∈ (1..^(♯‘𝐹)) ∧ 0 < 𝑋) → 0 < 𝑋)
3736gt0ne0d 11799 . . . . . . . . 9 ((𝑋 ∈ (1..^(♯‘𝐹)) ∧ 0 < 𝑋) → 𝑋 ≠ 0)
3837ex 412 . . . . . . . 8 (𝑋 ∈ (1..^(♯‘𝐹)) → (0 < 𝑋𝑋 ≠ 0))
3935, 38sylbird 260 . . . . . . 7 (𝑋 ∈ (1..^(♯‘𝐹)) → (1 ≤ 𝑋𝑋 ≠ 0))
4032, 39mpd 15 . . . . . 6 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 ≠ 0)
4140adantl 481 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ≠ 0)
42 pthdivtx 29655 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑋 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 𝑋 ≠ 0)) → (𝑃𝑋) ≠ (𝑃‘0))
4327, 28, 31, 41, 42syl13anc 1374 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃𝑋) ≠ (𝑃‘0))
44 dff14i 7251 . . . 4 ((𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ ((𝑃𝑋) ∈ (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃𝑋) ≠ (𝑃‘0))) → (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘0)))
457, 20, 26, 43, 44syl13anc 1374 . . 3 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘0)))
46 nn0fz0 13640 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹)))
4721, 46sylib 218 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
4810, 47ffvelcdmd 7074 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺))
498, 9, 483syl 18 . . . . 5 (𝜑 → (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺))
5049adantr 480 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺))
5129, 46sylib 218 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
5251adantr 480 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
5333zred 12695 . . . . . . 7 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 ∈ ℝ)
54 elfzolt2 13683 . . . . . . 7 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 < (♯‘𝐹))
5553, 54ltned 11369 . . . . . 6 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 ≠ (♯‘𝐹))
5655adantl 481 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ≠ (♯‘𝐹))
57 pthdivtx 29655 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑋 ∈ (1..^(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 𝑋 ≠ (♯‘𝐹))) → (𝑃𝑋) ≠ (𝑃‘(♯‘𝐹)))
5827, 28, 52, 56, 57syl13anc 1374 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃𝑋) ≠ (𝑃‘(♯‘𝐹)))
59 dff14i 7251 . . . 4 ((𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ ((𝑃𝑋) ∈ (Vtx‘𝐺) ∧ (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺) ∧ (𝑃𝑋) ≠ (𝑃‘(♯‘𝐹)))) → (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹))))
607, 20, 50, 58, 59syl13anc 1374 . . 3 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹))))
618, 9, 103syl 18 . . . . . . 7 (𝜑𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
6261adantr 480 . . . . . 6 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
6315adantl 481 . . . . . 6 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ∈ (0...(♯‘𝐹)))
6462, 63fvco3d 6978 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → ((𝑁𝑃)‘𝑋) = (𝑁‘(𝑃𝑋)))
6562, 31fvco3d 6978 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → ((𝑁𝑃)‘0) = (𝑁‘(𝑃‘0)))
6664, 65neeq12d 2993 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘0) ↔ (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘0))))
6762, 52fvco3d 6978 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → ((𝑁𝑃)‘(♯‘𝐹)) = (𝑁‘(𝑃‘(♯‘𝐹))))
6864, 67neeq12d 2993 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘(♯‘𝐹)) ↔ (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹)))))
6966, 68anbi12d 632 . . 3 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → ((((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘0) ∧ ((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘(♯‘𝐹))) ↔ ((𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘0)) ∧ (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹))))))
7045, 60, 69mpbir2and 713 . 2 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘0) ∧ ((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘(♯‘𝐹))))
71 df-ne 2933 . . 3 (((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘0) ↔ ¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘0))
72 df-ne 2933 . . 3 (((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘(♯‘𝐹)) ↔ ¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘(♯‘𝐹)))
7371, 72anbi12i 628 . 2 ((((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘0) ∧ ((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘(♯‘𝐹))) ↔ (¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘0) ∧ ¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘(♯‘𝐹))))
7470, 73sylib 218 1 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘0) ∧ ¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  cima 5657  ccom 5658  wf 6526  1-1wf1 6527  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128   < clt 11267  cle 11268  0cn0 12499  cz 12586  ...cfz 13522  ..^cfzo 13669  chash 14346  Vtxcvtx 28921  iEdgciedg 28922  USPGraphcuspgr 29073  Walkscwlks 29522  Pathscpths 29638   GraphIso cgrim 47836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-hash 14347  df-word 14530  df-wlks 29525  df-trls 29618  df-pths 29642  df-grim 47839
This theorem is referenced by:  upgrimpths  47870
  Copyright terms: Public domain W3C validator