Proof of Theorem upgrimpthslem2
| Step | Hyp | Ref
| Expression |
| 1 | | upgrimwlk.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| 2 | | eqid 2735 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 3 | | eqid 2735 |
. . . . . . 7
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 4 | 2, 3 | grimf1o 47845 |
. . . . . 6
⊢ (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
| 5 | | f1of1 6816 |
. . . . . 6
⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
| 6 | 1, 4, 5 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
| 8 | | upgrimpths.p |
. . . . . 6
⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| 9 | | pthiswlk 29653 |
. . . . . 6
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 10 | 2 | wlkp 29542 |
. . . . . . . . 9
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 11 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 12 | | fzo0ss1 13704 |
. . . . . . . . . . 11
⊢
(1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)) |
| 13 | | fzossfz 13693 |
. . . . . . . . . . 11
⊢
(0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
| 14 | 12, 13 | sstri 3968 |
. . . . . . . . . 10
⊢
(1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
| 15 | 14 | sseli 3954 |
. . . . . . . . 9
⊢ (𝑋 ∈
(1..^(♯‘𝐹))
→ 𝑋 ∈
(0...(♯‘𝐹))) |
| 16 | 15 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ∈ (0...(♯‘𝐹))) |
| 17 | 11, 16 | ffvelcdmd 7074 |
. . . . . . 7
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃‘𝑋) ∈ (Vtx‘𝐺)) |
| 18 | 17 | ex 412 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑋 ∈ (1..^(♯‘𝐹)) → (𝑃‘𝑋) ∈ (Vtx‘𝐺))) |
| 19 | 8, 9, 18 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ (1..^(♯‘𝐹)) → (𝑃‘𝑋) ∈ (Vtx‘𝐺))) |
| 20 | 19 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃‘𝑋) ∈ (Vtx‘𝐺)) |
| 21 | | wlkcl 29541 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
| 22 | | 0elfz 13639 |
. . . . . . . 8
⊢
((♯‘𝐹)
∈ ℕ0 → 0 ∈ (0...(♯‘𝐹))) |
| 23 | 21, 22 | syl 17 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → 0 ∈ (0...(♯‘𝐹))) |
| 24 | 10, 23 | ffvelcdmd 7074 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃‘0) ∈ (Vtx‘𝐺)) |
| 25 | 8, 9, 24 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝑃‘0) ∈ (Vtx‘𝐺)) |
| 26 | 25 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃‘0) ∈ (Vtx‘𝐺)) |
| 27 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → 𝐹(Paths‘𝐺)𝑃) |
| 28 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ∈ (1..^(♯‘𝐹))) |
| 29 | 8, 9, 21 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐹) ∈
ℕ0) |
| 30 | 29, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ∈
(0...(♯‘𝐹))) |
| 31 | 30 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → 0 ∈
(0...(♯‘𝐹))) |
| 32 | | elfzole1 13682 |
. . . . . . 7
⊢ (𝑋 ∈
(1..^(♯‘𝐹))
→ 1 ≤ 𝑋) |
| 33 | | elfzoelz 13674 |
. . . . . . . . 9
⊢ (𝑋 ∈
(1..^(♯‘𝐹))
→ 𝑋 ∈
ℤ) |
| 34 | | zgt0ge1 12645 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℤ → (0 <
𝑋 ↔ 1 ≤ 𝑋)) |
| 35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ (𝑋 ∈
(1..^(♯‘𝐹))
→ (0 < 𝑋 ↔ 1
≤ 𝑋)) |
| 36 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑋 ∈
(1..^(♯‘𝐹))
∧ 0 < 𝑋) → 0
< 𝑋) |
| 37 | 36 | gt0ne0d 11799 |
. . . . . . . . 9
⊢ ((𝑋 ∈
(1..^(♯‘𝐹))
∧ 0 < 𝑋) →
𝑋 ≠ 0) |
| 38 | 37 | ex 412 |
. . . . . . . 8
⊢ (𝑋 ∈
(1..^(♯‘𝐹))
→ (0 < 𝑋 →
𝑋 ≠ 0)) |
| 39 | 35, 38 | sylbird 260 |
. . . . . . 7
⊢ (𝑋 ∈
(1..^(♯‘𝐹))
→ (1 ≤ 𝑋 →
𝑋 ≠ 0)) |
| 40 | 32, 39 | mpd 15 |
. . . . . 6
⊢ (𝑋 ∈
(1..^(♯‘𝐹))
→ 𝑋 ≠
0) |
| 41 | 40 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ≠ 0) |
| 42 | | pthdivtx 29655 |
. . . . 5
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑋 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈
(0...(♯‘𝐹))
∧ 𝑋 ≠ 0)) →
(𝑃‘𝑋) ≠ (𝑃‘0)) |
| 43 | 27, 28, 31, 41, 42 | syl13anc 1374 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃‘𝑋) ≠ (𝑃‘0)) |
| 44 | | dff14i 7251 |
. . . 4
⊢ ((𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ ((𝑃‘𝑋) ∈ (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘𝑋) ≠ (𝑃‘0))) → (𝑁‘(𝑃‘𝑋)) ≠ (𝑁‘(𝑃‘0))) |
| 45 | 7, 20, 26, 43, 44 | syl13anc 1374 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (𝑁‘(𝑃‘𝑋)) ≠ (𝑁‘(𝑃‘0))) |
| 46 | | nn0fz0 13640 |
. . . . . . . 8
⊢
((♯‘𝐹)
∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 47 | 21, 46 | sylib 218 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 48 | 10, 47 | ffvelcdmd 7074 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺)) |
| 49 | 8, 9, 48 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺)) |
| 50 | 49 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺)) |
| 51 | 29, 46 | sylib 218 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐹) ∈
(0...(♯‘𝐹))) |
| 52 | 51 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈
(0...(♯‘𝐹))) |
| 53 | 33 | zred 12695 |
. . . . . . 7
⊢ (𝑋 ∈
(1..^(♯‘𝐹))
→ 𝑋 ∈
ℝ) |
| 54 | | elfzolt2 13683 |
. . . . . . 7
⊢ (𝑋 ∈
(1..^(♯‘𝐹))
→ 𝑋 <
(♯‘𝐹)) |
| 55 | 53, 54 | ltned 11369 |
. . . . . 6
⊢ (𝑋 ∈
(1..^(♯‘𝐹))
→ 𝑋 ≠
(♯‘𝐹)) |
| 56 | 55 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ≠ (♯‘𝐹)) |
| 57 | | pthdivtx 29655 |
. . . . 5
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑋 ∈ (1..^(♯‘𝐹)) ∧ (♯‘𝐹) ∈
(0...(♯‘𝐹))
∧ 𝑋 ≠
(♯‘𝐹))) →
(𝑃‘𝑋) ≠ (𝑃‘(♯‘𝐹))) |
| 58 | 27, 28, 52, 56, 57 | syl13anc 1374 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃‘𝑋) ≠ (𝑃‘(♯‘𝐹))) |
| 59 | | dff14i 7251 |
. . . 4
⊢ ((𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ ((𝑃‘𝑋) ∈ (Vtx‘𝐺) ∧ (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺) ∧ (𝑃‘𝑋) ≠ (𝑃‘(♯‘𝐹)))) → (𝑁‘(𝑃‘𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 60 | 7, 20, 50, 58, 59 | syl13anc 1374 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (𝑁‘(𝑃‘𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 61 | 8, 9, 10 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 62 | 61 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 63 | 15 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ∈ (0...(♯‘𝐹))) |
| 64 | 62, 63 | fvco3d 6978 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → ((𝑁 ∘ 𝑃)‘𝑋) = (𝑁‘(𝑃‘𝑋))) |
| 65 | 62, 31 | fvco3d 6978 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → ((𝑁 ∘ 𝑃)‘0) = (𝑁‘(𝑃‘0))) |
| 66 | 64, 65 | neeq12d 2993 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (((𝑁 ∘ 𝑃)‘𝑋) ≠ ((𝑁 ∘ 𝑃)‘0) ↔ (𝑁‘(𝑃‘𝑋)) ≠ (𝑁‘(𝑃‘0)))) |
| 67 | 62, 52 | fvco3d 6978 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → ((𝑁 ∘ 𝑃)‘(♯‘𝐹)) = (𝑁‘(𝑃‘(♯‘𝐹)))) |
| 68 | 64, 67 | neeq12d 2993 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (((𝑁 ∘ 𝑃)‘𝑋) ≠ ((𝑁 ∘ 𝑃)‘(♯‘𝐹)) ↔ (𝑁‘(𝑃‘𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹))))) |
| 69 | 66, 68 | anbi12d 632 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → ((((𝑁 ∘ 𝑃)‘𝑋) ≠ ((𝑁 ∘ 𝑃)‘0) ∧ ((𝑁 ∘ 𝑃)‘𝑋) ≠ ((𝑁 ∘ 𝑃)‘(♯‘𝐹))) ↔ ((𝑁‘(𝑃‘𝑋)) ≠ (𝑁‘(𝑃‘0)) ∧ (𝑁‘(𝑃‘𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹)))))) |
| 70 | 45, 60, 69 | mpbir2and 713 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (((𝑁 ∘ 𝑃)‘𝑋) ≠ ((𝑁 ∘ 𝑃)‘0) ∧ ((𝑁 ∘ 𝑃)‘𝑋) ≠ ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) |
| 71 | | df-ne 2933 |
. . 3
⊢ (((𝑁 ∘ 𝑃)‘𝑋) ≠ ((𝑁 ∘ 𝑃)‘0) ↔ ¬ ((𝑁 ∘ 𝑃)‘𝑋) = ((𝑁 ∘ 𝑃)‘0)) |
| 72 | | df-ne 2933 |
. . 3
⊢ (((𝑁 ∘ 𝑃)‘𝑋) ≠ ((𝑁 ∘ 𝑃)‘(♯‘𝐹)) ↔ ¬ ((𝑁 ∘ 𝑃)‘𝑋) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹))) |
| 73 | 71, 72 | anbi12i 628 |
. 2
⊢ ((((𝑁 ∘ 𝑃)‘𝑋) ≠ ((𝑁 ∘ 𝑃)‘0) ∧ ((𝑁 ∘ 𝑃)‘𝑋) ≠ ((𝑁 ∘ 𝑃)‘(♯‘𝐹))) ↔ (¬ ((𝑁 ∘ 𝑃)‘𝑋) = ((𝑁 ∘ 𝑃)‘0) ∧ ¬ ((𝑁 ∘ 𝑃)‘𝑋) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) |
| 74 | 70, 73 | sylib 218 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (¬ ((𝑁 ∘ 𝑃)‘𝑋) = ((𝑁 ∘ 𝑃)‘0) ∧ ¬ ((𝑁 ∘ 𝑃)‘𝑋) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) |