Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimpthslem2 Structured version   Visualization version   GIF version

Theorem upgrimpthslem2 47901
Description: Lemma 2 for upgrimpths 47902. (Contributed by AV, 31-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimpths.p (𝜑𝐹(Paths‘𝐺)𝑃)
Assertion
Ref Expression
upgrimpthslem2 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘0) ∧ ¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘(♯‘𝐹))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼   𝑥,𝐽   𝑥,𝑃   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐻(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem upgrimpthslem2
StepHypRef Expression
1 upgrimwlk.n . . . . . 6 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
2 eqid 2729 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2729 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
42, 3grimf1o 47877 . . . . . 6 (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
5 f1of1 6781 . . . . . 6 (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
61, 4, 53syl 18 . . . . 5 (𝜑𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
76adantr 480 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
8 upgrimpths.p . . . . . 6 (𝜑𝐹(Paths‘𝐺)𝑃)
9 pthiswlk 29705 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
102wlkp 29597 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
1110adantr 480 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑋 ∈ (1..^(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
12 fzo0ss1 13626 . . . . . . . . . . 11 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
13 fzossfz 13615 . . . . . . . . . . 11 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
1412, 13sstri 3953 . . . . . . . . . 10 (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
1514sseli 3939 . . . . . . . . 9 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 ∈ (0...(♯‘𝐹)))
1615adantl 481 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ∈ (0...(♯‘𝐹)))
1711, 16ffvelcdmd 7039 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃𝑋) ∈ (Vtx‘𝐺))
1817ex 412 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝑋 ∈ (1..^(♯‘𝐹)) → (𝑃𝑋) ∈ (Vtx‘𝐺)))
198, 9, 183syl 18 . . . . 5 (𝜑 → (𝑋 ∈ (1..^(♯‘𝐹)) → (𝑃𝑋) ∈ (Vtx‘𝐺)))
2019imp 406 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃𝑋) ∈ (Vtx‘𝐺))
21 wlkcl 29596 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
22 0elfz 13561 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
2321, 22syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → 0 ∈ (0...(♯‘𝐹)))
2410, 23ffvelcdmd 7039 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝑃‘0) ∈ (Vtx‘𝐺))
258, 9, 243syl 18 . . . . 5 (𝜑 → (𝑃‘0) ∈ (Vtx‘𝐺))
2625adantr 480 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃‘0) ∈ (Vtx‘𝐺))
278adantr 480 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝐹(Paths‘𝐺)𝑃)
28 simpr 484 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ∈ (1..^(♯‘𝐹)))
298, 9, 213syl 18 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
3029, 22syl 17 . . . . . 6 (𝜑 → 0 ∈ (0...(♯‘𝐹)))
3130adantr 480 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 0 ∈ (0...(♯‘𝐹)))
32 elfzole1 13604 . . . . . . 7 (𝑋 ∈ (1..^(♯‘𝐹)) → 1 ≤ 𝑋)
33 elfzoelz 13596 . . . . . . . . 9 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 ∈ ℤ)
34 zgt0ge1 12564 . . . . . . . . 9 (𝑋 ∈ ℤ → (0 < 𝑋 ↔ 1 ≤ 𝑋))
3533, 34syl 17 . . . . . . . 8 (𝑋 ∈ (1..^(♯‘𝐹)) → (0 < 𝑋 ↔ 1 ≤ 𝑋))
36 simpr 484 . . . . . . . . . 10 ((𝑋 ∈ (1..^(♯‘𝐹)) ∧ 0 < 𝑋) → 0 < 𝑋)
3736gt0ne0d 11718 . . . . . . . . 9 ((𝑋 ∈ (1..^(♯‘𝐹)) ∧ 0 < 𝑋) → 𝑋 ≠ 0)
3837ex 412 . . . . . . . 8 (𝑋 ∈ (1..^(♯‘𝐹)) → (0 < 𝑋𝑋 ≠ 0))
3935, 38sylbird 260 . . . . . . 7 (𝑋 ∈ (1..^(♯‘𝐹)) → (1 ≤ 𝑋𝑋 ≠ 0))
4032, 39mpd 15 . . . . . 6 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 ≠ 0)
4140adantl 481 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ≠ 0)
42 pthdivtx 29707 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑋 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 𝑋 ≠ 0)) → (𝑃𝑋) ≠ (𝑃‘0))
4327, 28, 31, 41, 42syl13anc 1374 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃𝑋) ≠ (𝑃‘0))
44 dff14i 7216 . . . 4 ((𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ ((𝑃𝑋) ∈ (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃𝑋) ≠ (𝑃‘0))) → (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘0)))
457, 20, 26, 43, 44syl13anc 1374 . . 3 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘0)))
46 nn0fz0 13562 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹)))
4721, 46sylib 218 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
4810, 47ffvelcdmd 7039 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺))
498, 9, 483syl 18 . . . . 5 (𝜑 → (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺))
5049adantr 480 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺))
5129, 46sylib 218 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
5251adantr 480 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
5333zred 12614 . . . . . . 7 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 ∈ ℝ)
54 elfzolt2 13605 . . . . . . 7 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 < (♯‘𝐹))
5553, 54ltned 11286 . . . . . 6 (𝑋 ∈ (1..^(♯‘𝐹)) → 𝑋 ≠ (♯‘𝐹))
5655adantl 481 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ≠ (♯‘𝐹))
57 pthdivtx 29707 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑋 ∈ (1..^(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 𝑋 ≠ (♯‘𝐹))) → (𝑃𝑋) ≠ (𝑃‘(♯‘𝐹)))
5827, 28, 52, 56, 57syl13anc 1374 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑃𝑋) ≠ (𝑃‘(♯‘𝐹)))
59 dff14i 7216 . . . 4 ((𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ ((𝑃𝑋) ∈ (Vtx‘𝐺) ∧ (𝑃‘(♯‘𝐹)) ∈ (Vtx‘𝐺) ∧ (𝑃𝑋) ≠ (𝑃‘(♯‘𝐹)))) → (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹))))
607, 20, 50, 58, 59syl13anc 1374 . . 3 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹))))
618, 9, 103syl 18 . . . . . . 7 (𝜑𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
6261adantr 480 . . . . . 6 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
6315adantl 481 . . . . . 6 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → 𝑋 ∈ (0...(♯‘𝐹)))
6462, 63fvco3d 6943 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → ((𝑁𝑃)‘𝑋) = (𝑁‘(𝑃𝑋)))
6562, 31fvco3d 6943 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → ((𝑁𝑃)‘0) = (𝑁‘(𝑃‘0)))
6664, 65neeq12d 2986 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘0) ↔ (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘0))))
6762, 52fvco3d 6943 . . . . 5 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → ((𝑁𝑃)‘(♯‘𝐹)) = (𝑁‘(𝑃‘(♯‘𝐹))))
6864, 67neeq12d 2986 . . . 4 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘(♯‘𝐹)) ↔ (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹)))))
6966, 68anbi12d 632 . . 3 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → ((((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘0) ∧ ((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘(♯‘𝐹))) ↔ ((𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘0)) ∧ (𝑁‘(𝑃𝑋)) ≠ (𝑁‘(𝑃‘(♯‘𝐹))))))
7045, 60, 69mpbir2and 713 . 2 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘0) ∧ ((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘(♯‘𝐹))))
71 df-ne 2926 . . 3 (((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘0) ↔ ¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘0))
72 df-ne 2926 . . 3 (((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘(♯‘𝐹)) ↔ ¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘(♯‘𝐹)))
7371, 72anbi12i 628 . 2 ((((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘0) ∧ ((𝑁𝑃)‘𝑋) ≠ ((𝑁𝑃)‘(♯‘𝐹))) ↔ (¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘0) ∧ ¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘(♯‘𝐹))))
7470, 73sylib 218 1 ((𝜑𝑋 ∈ (1..^(♯‘𝐹))) → (¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘0) ∧ ¬ ((𝑁𝑃)‘𝑋) = ((𝑁𝑃)‘(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cmpt 5183  ccnv 5630  dom cdm 5631  cima 5634  ccom 5635  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   < clt 11184  cle 11185  0cn0 12418  cz 12505  ...cfz 13444  ..^cfzo 13591  chash 14271  Vtxcvtx 28976  iEdgciedg 28977  USPGraphcuspgr 29128  Walkscwlks 29577  Pathscpths 29690   GraphIso cgrim 47868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-wlks 29580  df-trls 29671  df-pths 29694  df-grim 47871
This theorem is referenced by:  upgrimpths  47902
  Copyright terms: Public domain W3C validator