MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelimcl Structured version   Visualization version   GIF version

Theorem oelimcl 8602
Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oelimcl ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴o 𝐵))

Proof of Theorem oelimcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4125 . . . 4 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
2 limelon 6427 . . . 4 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
3 oecl 8539 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2an 594 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) ∈ On)
5 eloni 6373 . . 3 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
64, 5syl 17 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Ord (𝐴o 𝐵))
71adantr 479 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐴 ∈ On)
82adantl 480 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐵 ∈ On)
9 dif20el 8507 . . . 4 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
109adantr 479 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ 𝐴)
11 oen0 8588 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
127, 8, 10, 11syl21anc 834 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ (𝐴o 𝐵))
13 oelim2 8597 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦))
141, 13sylan 578 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦))
1514eleq2d 2817 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴o 𝐵) ↔ 𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦)))
16 eliun 5000 . . . . 5 (𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ↔ ∃𝑦 ∈ (𝐵 ∖ 1o)𝑥 ∈ (𝐴o 𝑦))
17 eldifi 4125 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ 1o) → 𝑦𝐵)
187adantr 479 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐴 ∈ On)
198adantr 479 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐵 ∈ On)
20 simprl 767 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑦𝐵)
21 onelon 6388 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦𝐵) → 𝑦 ∈ On)
2219, 20, 21syl2anc 582 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑦 ∈ On)
23 oecl 8539 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
2418, 22, 23syl2anc 582 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝑦) ∈ On)
25 eloni 6373 . . . . . . . . . . 11 ((𝐴o 𝑦) ∈ On → Ord (𝐴o 𝑦))
2624, 25syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → Ord (𝐴o 𝑦))
27 simprr 769 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑥 ∈ (𝐴o 𝑦))
28 ordsucss 7808 . . . . . . . . . 10 (Ord (𝐴o 𝑦) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ⊆ (𝐴o 𝑦)))
2926, 27, 28sylc 65 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ⊆ (𝐴o 𝑦))
30 simpll 763 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐴 ∈ (On ∖ 2o))
31 oeordi 8589 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑦𝐵 → (𝐴o 𝑦) ∈ (𝐴o 𝐵)))
3219, 30, 31syl2anc 582 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝑦𝐵 → (𝐴o 𝑦) ∈ (𝐴o 𝐵)))
3320, 32mpd 15 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝑦) ∈ (𝐴o 𝐵))
34 onelon 6388 . . . . . . . . . . . 12 (((𝐴o 𝑦) ∈ On ∧ 𝑥 ∈ (𝐴o 𝑦)) → 𝑥 ∈ On)
3524, 27, 34syl2anc 582 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑥 ∈ On)
36 onsuc 7801 . . . . . . . . . . 11 (𝑥 ∈ On → suc 𝑥 ∈ On)
3735, 36syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ∈ On)
384adantr 479 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝐵) ∈ On)
39 ontr2 6410 . . . . . . . . . 10 ((suc 𝑥 ∈ On ∧ (𝐴o 𝐵) ∈ On) → ((suc 𝑥 ⊆ (𝐴o 𝑦) ∧ (𝐴o 𝑦) ∈ (𝐴o 𝐵)) → suc 𝑥 ∈ (𝐴o 𝐵)))
4037, 38, 39syl2anc 582 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → ((suc 𝑥 ⊆ (𝐴o 𝑦) ∧ (𝐴o 𝑦) ∈ (𝐴o 𝐵)) → suc 𝑥 ∈ (𝐴o 𝐵)))
4129, 33, 40mp2and 695 . . . . . . . 8 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ∈ (𝐴o 𝐵))
4241expr 455 . . . . . . 7 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦𝐵) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4317, 42sylan2 591 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ (𝐵 ∖ 1o)) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4443rexlimdva 3153 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (∃𝑦 ∈ (𝐵 ∖ 1o)𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4516, 44biimtrid 241 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4615, 45sylbid 239 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴o 𝐵) → suc 𝑥 ∈ (𝐴o 𝐵)))
4746ralrimiv 3143 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∀𝑥 ∈ (𝐴o 𝐵)suc 𝑥 ∈ (𝐴o 𝐵))
48 dflim4 7839 . 2 (Lim (𝐴o 𝐵) ↔ (Ord (𝐴o 𝐵) ∧ ∅ ∈ (𝐴o 𝐵) ∧ ∀𝑥 ∈ (𝐴o 𝐵)suc 𝑥 ∈ (𝐴o 𝐵)))
496, 12, 47, 48syl3anbrc 1341 1 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wral 3059  wrex 3068  cdif 3944  wss 3947  c0 4321   ciun 4996  Ord word 6362  Oncon0 6363  Lim wlim 6364  suc csuc 6365  (class class class)co 7411  1oc1o 8461  2oc2o 8462  o coe 8467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-omul 8473  df-oexp 8474
This theorem is referenced by:  oaabs2  8650  omabs  8652  rp-oelim2  42360
  Copyright terms: Public domain W3C validator