MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelimcl Structured version   Visualization version   GIF version

Theorem oelimcl 8564
Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oelimcl ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴o 𝐵))

Proof of Theorem oelimcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4094 . . . 4 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
2 limelon 6397 . . . 4 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
3 oecl 8501 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2an 596 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) ∈ On)
5 eloni 6342 . . 3 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
64, 5syl 17 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Ord (𝐴o 𝐵))
71adantr 480 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐴 ∈ On)
82adantl 481 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐵 ∈ On)
9 dif20el 8469 . . . 4 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
109adantr 480 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ 𝐴)
11 oen0 8550 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
127, 8, 10, 11syl21anc 837 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ (𝐴o 𝐵))
13 oelim2 8559 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦))
141, 13sylan 580 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦))
1514eleq2d 2814 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴o 𝐵) ↔ 𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦)))
16 eliun 4959 . . . . 5 (𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ↔ ∃𝑦 ∈ (𝐵 ∖ 1o)𝑥 ∈ (𝐴o 𝑦))
17 eldifi 4094 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ 1o) → 𝑦𝐵)
187adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐴 ∈ On)
198adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐵 ∈ On)
20 simprl 770 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑦𝐵)
21 onelon 6357 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦𝐵) → 𝑦 ∈ On)
2219, 20, 21syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑦 ∈ On)
23 oecl 8501 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
2418, 22, 23syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝑦) ∈ On)
25 eloni 6342 . . . . . . . . . . 11 ((𝐴o 𝑦) ∈ On → Ord (𝐴o 𝑦))
2624, 25syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → Ord (𝐴o 𝑦))
27 simprr 772 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑥 ∈ (𝐴o 𝑦))
28 ordsucss 7793 . . . . . . . . . 10 (Ord (𝐴o 𝑦) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ⊆ (𝐴o 𝑦)))
2926, 27, 28sylc 65 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ⊆ (𝐴o 𝑦))
30 simpll 766 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐴 ∈ (On ∖ 2o))
31 oeordi 8551 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑦𝐵 → (𝐴o 𝑦) ∈ (𝐴o 𝐵)))
3219, 30, 31syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝑦𝐵 → (𝐴o 𝑦) ∈ (𝐴o 𝐵)))
3320, 32mpd 15 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝑦) ∈ (𝐴o 𝐵))
34 onelon 6357 . . . . . . . . . . . 12 (((𝐴o 𝑦) ∈ On ∧ 𝑥 ∈ (𝐴o 𝑦)) → 𝑥 ∈ On)
3524, 27, 34syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑥 ∈ On)
36 onsuc 7787 . . . . . . . . . . 11 (𝑥 ∈ On → suc 𝑥 ∈ On)
3735, 36syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ∈ On)
384adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝐵) ∈ On)
39 ontr2 6380 . . . . . . . . . 10 ((suc 𝑥 ∈ On ∧ (𝐴o 𝐵) ∈ On) → ((suc 𝑥 ⊆ (𝐴o 𝑦) ∧ (𝐴o 𝑦) ∈ (𝐴o 𝐵)) → suc 𝑥 ∈ (𝐴o 𝐵)))
4037, 38, 39syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → ((suc 𝑥 ⊆ (𝐴o 𝑦) ∧ (𝐴o 𝑦) ∈ (𝐴o 𝐵)) → suc 𝑥 ∈ (𝐴o 𝐵)))
4129, 33, 40mp2and 699 . . . . . . . 8 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ∈ (𝐴o 𝐵))
4241expr 456 . . . . . . 7 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦𝐵) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4317, 42sylan2 593 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ (𝐵 ∖ 1o)) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4443rexlimdva 3134 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (∃𝑦 ∈ (𝐵 ∖ 1o)𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4516, 44biimtrid 242 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4615, 45sylbid 240 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴o 𝐵) → suc 𝑥 ∈ (𝐴o 𝐵)))
4746ralrimiv 3124 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∀𝑥 ∈ (𝐴o 𝐵)suc 𝑥 ∈ (𝐴o 𝐵))
48 dflim4 7824 . 2 (Lim (𝐴o 𝐵) ↔ (Ord (𝐴o 𝐵) ∧ ∅ ∈ (𝐴o 𝐵) ∧ ∀𝑥 ∈ (𝐴o 𝐵)suc 𝑥 ∈ (𝐴o 𝐵)))
496, 12, 47, 48syl3anbrc 1344 1 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3911  wss 3914  c0 4296   ciun 4955  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334  (class class class)co 7387  1oc1o 8427  2oc2o 8428  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440
This theorem is referenced by:  oaabs2  8613  omabs  8615  rp-oelim2  43297
  Copyright terms: Public domain W3C validator