MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelimcl Structured version   Visualization version   GIF version

Theorem oelimcl 8431
Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oelimcl ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴o 𝐵))

Proof of Theorem oelimcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4061 . . . 4 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
2 limelon 6329 . . . 4 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
3 oecl 8367 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2an 596 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) ∈ On)
5 eloni 6276 . . 3 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
64, 5syl 17 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Ord (𝐴o 𝐵))
71adantr 481 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐴 ∈ On)
82adantl 482 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐵 ∈ On)
9 dif20el 8335 . . . 4 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
109adantr 481 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ 𝐴)
11 oen0 8417 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
127, 8, 10, 11syl21anc 835 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ (𝐴o 𝐵))
13 oelim2 8426 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦))
141, 13sylan 580 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦))
1514eleq2d 2824 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴o 𝐵) ↔ 𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦)))
16 eliun 4928 . . . . 5 (𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ↔ ∃𝑦 ∈ (𝐵 ∖ 1o)𝑥 ∈ (𝐴o 𝑦))
17 eldifi 4061 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ 1o) → 𝑦𝐵)
187adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐴 ∈ On)
198adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐵 ∈ On)
20 simprl 768 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑦𝐵)
21 onelon 6291 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦𝐵) → 𝑦 ∈ On)
2219, 20, 21syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑦 ∈ On)
23 oecl 8367 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
2418, 22, 23syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝑦) ∈ On)
25 eloni 6276 . . . . . . . . . . 11 ((𝐴o 𝑦) ∈ On → Ord (𝐴o 𝑦))
2624, 25syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → Ord (𝐴o 𝑦))
27 simprr 770 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑥 ∈ (𝐴o 𝑦))
28 ordsucss 7665 . . . . . . . . . 10 (Ord (𝐴o 𝑦) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ⊆ (𝐴o 𝑦)))
2926, 27, 28sylc 65 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ⊆ (𝐴o 𝑦))
30 simpll 764 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐴 ∈ (On ∖ 2o))
31 oeordi 8418 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑦𝐵 → (𝐴o 𝑦) ∈ (𝐴o 𝐵)))
3219, 30, 31syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝑦𝐵 → (𝐴o 𝑦) ∈ (𝐴o 𝐵)))
3320, 32mpd 15 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝑦) ∈ (𝐴o 𝐵))
34 onelon 6291 . . . . . . . . . . . 12 (((𝐴o 𝑦) ∈ On ∧ 𝑥 ∈ (𝐴o 𝑦)) → 𝑥 ∈ On)
3524, 27, 34syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑥 ∈ On)
36 suceloni 7659 . . . . . . . . . . 11 (𝑥 ∈ On → suc 𝑥 ∈ On)
3735, 36syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ∈ On)
384adantr 481 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝐵) ∈ On)
39 ontr2 6313 . . . . . . . . . 10 ((suc 𝑥 ∈ On ∧ (𝐴o 𝐵) ∈ On) → ((suc 𝑥 ⊆ (𝐴o 𝑦) ∧ (𝐴o 𝑦) ∈ (𝐴o 𝐵)) → suc 𝑥 ∈ (𝐴o 𝐵)))
4037, 38, 39syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → ((suc 𝑥 ⊆ (𝐴o 𝑦) ∧ (𝐴o 𝑦) ∈ (𝐴o 𝐵)) → suc 𝑥 ∈ (𝐴o 𝐵)))
4129, 33, 40mp2and 696 . . . . . . . 8 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ∈ (𝐴o 𝐵))
4241expr 457 . . . . . . 7 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦𝐵) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4317, 42sylan2 593 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ (𝐵 ∖ 1o)) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4443rexlimdva 3213 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (∃𝑦 ∈ (𝐵 ∖ 1o)𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4516, 44syl5bi 241 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4615, 45sylbid 239 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴o 𝐵) → suc 𝑥 ∈ (𝐴o 𝐵)))
4746ralrimiv 3102 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∀𝑥 ∈ (𝐴o 𝐵)suc 𝑥 ∈ (𝐴o 𝐵))
48 dflim4 7695 . 2 (Lim (𝐴o 𝐵) ↔ (Ord (𝐴o 𝐵) ∧ ∅ ∈ (𝐴o 𝐵) ∧ ∀𝑥 ∈ (𝐴o 𝐵)suc 𝑥 ∈ (𝐴o 𝐵)))
496, 12, 47, 48syl3anbrc 1342 1 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cdif 3884  wss 3887  c0 4256   ciun 4924  Ord word 6265  Oncon0 6266  Lim wlim 6267  suc csuc 6268  (class class class)co 7275  1oc1o 8290  2oc2o 8291  o coe 8296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-oexp 8303
This theorem is referenced by:  oaabs2  8479  omabs  8481
  Copyright terms: Public domain W3C validator