MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnbgr2 Structured version   Visualization version   GIF version

Theorem dfnbgr2 28327
Description: Alternate definition of the neighbors of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 15-Nov-2020.) (Revised by AV, 21-Mar-2021.)
Hypotheses
Ref Expression
nbgrval.v 𝑉 = (Vtx‘𝐺)
nbgrval.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
dfnbgr2 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺,𝑛   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛
Allowed substitution hint:   𝐸(𝑛)

Proof of Theorem dfnbgr2
StepHypRef Expression
1 nbgrval.v . . 3 𝑉 = (Vtx‘𝐺)
2 nbgrval.e . . 3 𝐸 = (Edg‘𝐺)
31, 2nbgrval 28326 . 2 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
4 prssg 4784 . . . . . 6 ((𝑁𝑉𝑛 ∈ V) → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
54elvd 3455 . . . . 5 (𝑁𝑉 → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
65bicomd 222 . . . 4 (𝑁𝑉 → ({𝑁, 𝑛} ⊆ 𝑒 ↔ (𝑁𝑒𝑛𝑒)))
76rexbidv 3176 . . 3 (𝑁𝑉 → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)))
87rabbidv 3418 . 2 (𝑁𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
93, 8eqtrd 2777 1 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wrex 3074  {crab 3410  Vcvv 3448  cdif 3912  wss 3915  {csn 4591  {cpr 4593  cfv 6501  (class class class)co 7362  Vtxcvtx 27989  Edgcedg 28040   NeighbVtx cnbgr 28322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6453  df-fun 6503  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-nbgr 28323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator