| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfnbgr2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the neighbors of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 15-Nov-2020.) (Revised by AV, 21-Mar-2021.) |
| Ref | Expression |
|---|---|
| nbgrval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| nbgrval.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| dfnbgr2 | ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrval.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | nbgrval.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | nbgrval 29315 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) |
| 4 | prssg 4795 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V) → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒)) | |
| 5 | 4 | elvd 3465 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒)) |
| 6 | 5 | bicomd 223 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({𝑁, 𝑛} ⊆ 𝑒 ↔ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
| 7 | 6 | rexbidv 3164 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
| 8 | 7 | rabbidv 3423 | . 2 ⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
| 9 | 3, 8 | eqtrd 2770 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 {cpr 4603 ‘cfv 6531 (class class class)co 7405 Vtxcvtx 28975 Edgcedg 29026 NeighbVtx cnbgr 29311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-nbgr 29312 |
| This theorem is referenced by: dfclnbgr4 47838 dfnbgr5 47864 dfnbgr6 47870 stgrnbgr0 47976 |
| Copyright terms: Public domain | W3C validator |