Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfnbgr2 | Structured version Visualization version GIF version |
Description: Alternate definition of the neighbors of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 15-Nov-2020.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
nbgrval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbgrval.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
dfnbgr2 | ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrval.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | nbgrval.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | nbgrval 27713 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) |
4 | prssg 4752 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V) → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒)) | |
5 | 4 | elvd 3436 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒)) |
6 | 5 | bicomd 222 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({𝑁, 𝑛} ⊆ 𝑒 ↔ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
7 | 6 | rexbidv 3224 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
8 | 7 | rabbidv 3411 | . 2 ⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
9 | 3, 8 | eqtrd 2778 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 Vcvv 3429 ∖ cdif 3883 ⊆ wss 3886 {csn 4561 {cpr 4563 ‘cfv 6426 (class class class)co 7267 Vtxcvtx 27376 Edgcedg 27427 NeighbVtx cnbgr 27709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-iota 6384 df-fun 6428 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-nbgr 27710 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |