MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnbgr2 Structured version   Visualization version   GIF version

Theorem dfnbgr2 29240
Description: Alternate definition of the neighbors of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 15-Nov-2020.) (Revised by AV, 21-Mar-2021.)
Hypotheses
Ref Expression
nbgrval.v 𝑉 = (Vtx‘𝐺)
nbgrval.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
dfnbgr2 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺,𝑛   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛
Allowed substitution hint:   𝐸(𝑛)

Proof of Theorem dfnbgr2
StepHypRef Expression
1 nbgrval.v . . 3 𝑉 = (Vtx‘𝐺)
2 nbgrval.e . . 3 𝐸 = (Edg‘𝐺)
31, 2nbgrval 29239 . 2 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
4 prssg 4779 . . . . . 6 ((𝑁𝑉𝑛 ∈ V) → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
54elvd 3450 . . . . 5 (𝑁𝑉 → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
65bicomd 223 . . . 4 (𝑁𝑉 → ({𝑁, 𝑛} ⊆ 𝑒 ↔ (𝑁𝑒𝑛𝑒)))
76rexbidv 3157 . . 3 (𝑁𝑉 → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)))
87rabbidv 3410 . 2 (𝑁𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
93, 8eqtrd 2764 1 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  wss 3911  {csn 4585  {cpr 4587  cfv 6499  (class class class)co 7369  Vtxcvtx 28899  Edgcedg 28950   NeighbVtx cnbgr 29235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-nbgr 29236
This theorem is referenced by:  dfclnbgr4  47798  dfnbgr5  47824  dfnbgr6  47830  stgrnbgr0  47936
  Copyright terms: Public domain W3C validator