MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem6 Structured version   Visualization version   GIF version

Theorem inf3lem6 9096
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9098 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem6 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem6
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . . . . . . . . 11 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . . . . . . . . 11 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 vex 3497 . . . . . . . . . . 11 𝑢 ∈ V
4 vex 3497 . . . . . . . . . . 11 𝑣 ∈ V
51, 2, 3, 4inf3lem5 9095 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ 𝑣𝑢) → (𝐹𝑣) ⊊ (𝐹𝑢)))
6 dfpss2 4062 . . . . . . . . . . 11 ((𝐹𝑣) ⊊ (𝐹𝑢) ↔ ((𝐹𝑣) ⊆ (𝐹𝑢) ∧ ¬ (𝐹𝑣) = (𝐹𝑢)))
76simprbi 499 . . . . . . . . . 10 ((𝐹𝑣) ⊊ (𝐹𝑢) → ¬ (𝐹𝑣) = (𝐹𝑢))
85, 7syl6 35 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ 𝑣𝑢) → ¬ (𝐹𝑣) = (𝐹𝑢)))
98expdimp 455 . . . . . . . 8 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ 𝑢 ∈ ω) → (𝑣𝑢 → ¬ (𝐹𝑣) = (𝐹𝑢)))
109adantrl 714 . . . . . . 7 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑣𝑢 → ¬ (𝐹𝑣) = (𝐹𝑢)))
111, 2, 4, 3inf3lem5 9095 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑣 ∈ ω ∧ 𝑢𝑣) → (𝐹𝑢) ⊊ (𝐹𝑣)))
12 dfpss2 4062 . . . . . . . . . . . 12 ((𝐹𝑢) ⊊ (𝐹𝑣) ↔ ((𝐹𝑢) ⊆ (𝐹𝑣) ∧ ¬ (𝐹𝑢) = (𝐹𝑣)))
1312simprbi 499 . . . . . . . . . . 11 ((𝐹𝑢) ⊊ (𝐹𝑣) → ¬ (𝐹𝑢) = (𝐹𝑣))
14 eqcom 2828 . . . . . . . . . . 11 ((𝐹𝑢) = (𝐹𝑣) ↔ (𝐹𝑣) = (𝐹𝑢))
1513, 14sylnib 330 . . . . . . . . . 10 ((𝐹𝑢) ⊊ (𝐹𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢))
1611, 15syl6 35 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑣 ∈ ω ∧ 𝑢𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢)))
1716expdimp 455 . . . . . . . 8 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ 𝑣 ∈ ω) → (𝑢𝑣 → ¬ (𝐹𝑣) = (𝐹𝑢)))
1817adantrr 715 . . . . . . 7 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑢𝑣 → ¬ (𝐹𝑣) = (𝐹𝑢)))
1910, 18jaod 855 . . . . . 6 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝑣𝑢𝑢𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢)))
2019con2d 136 . . . . 5 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝐹𝑣) = (𝐹𝑢) → ¬ (𝑣𝑢𝑢𝑣)))
21 nnord 7588 . . . . . . 7 (𝑣 ∈ ω → Ord 𝑣)
22 nnord 7588 . . . . . . 7 (𝑢 ∈ ω → Ord 𝑢)
23 ordtri3 6227 . . . . . . 7 ((Ord 𝑣 ∧ Ord 𝑢) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2421, 22, 23syl2an 597 . . . . . 6 ((𝑣 ∈ ω ∧ 𝑢 ∈ ω) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2524adantl 484 . . . . 5 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2620, 25sylibrd 261 . . . 4 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢))
2726ralrimivva 3191 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢))
28 frfnom 8070 . . . . . 6 (rec(𝐺, ∅) ↾ ω) Fn ω
29 fneq1 6444 . . . . . 6 (𝐹 = (rec(𝐺, ∅) ↾ ω) → (𝐹 Fn ω ↔ (rec(𝐺, ∅) ↾ ω) Fn ω))
3028, 29mpbiri 260 . . . . 5 (𝐹 = (rec(𝐺, ∅) ↾ ω) → 𝐹 Fn ω)
31 fvelrnb 6726 . . . . . . . 8 (𝐹 Fn ω → (𝑢 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ω (𝐹𝑣) = 𝑢))
32 inf3lem.4 . . . . . . . . . . . 12 𝐵 ∈ V
331, 2, 4, 32inf3lemd 9090 . . . . . . . . . . 11 (𝑣 ∈ ω → (𝐹𝑣) ⊆ 𝑥)
34 fvex 6683 . . . . . . . . . . . 12 (𝐹𝑣) ∈ V
3534elpw 4543 . . . . . . . . . . 11 ((𝐹𝑣) ∈ 𝒫 𝑥 ↔ (𝐹𝑣) ⊆ 𝑥)
3633, 35sylibr 236 . . . . . . . . . 10 (𝑣 ∈ ω → (𝐹𝑣) ∈ 𝒫 𝑥)
37 eleq1 2900 . . . . . . . . . 10 ((𝐹𝑣) = 𝑢 → ((𝐹𝑣) ∈ 𝒫 𝑥𝑢 ∈ 𝒫 𝑥))
3836, 37syl5ibcom 247 . . . . . . . . 9 (𝑣 ∈ ω → ((𝐹𝑣) = 𝑢𝑢 ∈ 𝒫 𝑥))
3938rexlimiv 3280 . . . . . . . 8 (∃𝑣 ∈ ω (𝐹𝑣) = 𝑢𝑢 ∈ 𝒫 𝑥)
4031, 39syl6bi 255 . . . . . . 7 (𝐹 Fn ω → (𝑢 ∈ ran 𝐹𝑢 ∈ 𝒫 𝑥))
4140ssrdv 3973 . . . . . 6 (𝐹 Fn ω → ran 𝐹 ⊆ 𝒫 𝑥)
4241ancli 551 . . . . 5 (𝐹 Fn ω → (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥))
432, 30, 42mp2b 10 . . . 4 (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥)
44 df-f 6359 . . . 4 (𝐹:ω⟶𝒫 𝑥 ↔ (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥))
4543, 44mpbir 233 . . 3 𝐹:ω⟶𝒫 𝑥
4627, 45jctil 522 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹:ω⟶𝒫 𝑥 ∧ ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢)))
47 dff13 7013 . 2 (𝐹:ω–1-1→𝒫 𝑥 ↔ (𝐹:ω⟶𝒫 𝑥 ∧ ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢)))
4846, 47sylibr 236 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cin 3935  wss 3936  wpss 3937  c0 4291  𝒫 cpw 4539   cuni 4838  cmpt 5146  ran crn 5556  cres 5557  Ord word 6190   Fn wfn 6350  wf 6351  1-1wf1 6352  cfv 6355  ωcom 7580  reccrdg 8045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-reg 9056
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046
This theorem is referenced by:  inf3lem7  9097  dominf  9867  dominfac  9995
  Copyright terms: Public domain W3C validator