MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem6 Structured version   Visualization version   GIF version

Theorem inf3lem6 9569
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9571 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem6 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem6
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . . . . . . . . 11 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . . . . . . . . 11 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 vex 3449 . . . . . . . . . . 11 𝑢 ∈ V
4 vex 3449 . . . . . . . . . . 11 𝑣 ∈ V
51, 2, 3, 4inf3lem5 9568 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ 𝑣𝑢) → (𝐹𝑣) ⊊ (𝐹𝑢)))
6 dfpss2 4045 . . . . . . . . . . 11 ((𝐹𝑣) ⊊ (𝐹𝑢) ↔ ((𝐹𝑣) ⊆ (𝐹𝑢) ∧ ¬ (𝐹𝑣) = (𝐹𝑢)))
76simprbi 497 . . . . . . . . . 10 ((𝐹𝑣) ⊊ (𝐹𝑢) → ¬ (𝐹𝑣) = (𝐹𝑢))
85, 7syl6 35 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ 𝑣𝑢) → ¬ (𝐹𝑣) = (𝐹𝑢)))
98expdimp 453 . . . . . . . 8 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ 𝑢 ∈ ω) → (𝑣𝑢 → ¬ (𝐹𝑣) = (𝐹𝑢)))
109adantrl 714 . . . . . . 7 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑣𝑢 → ¬ (𝐹𝑣) = (𝐹𝑢)))
111, 2, 4, 3inf3lem5 9568 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑣 ∈ ω ∧ 𝑢𝑣) → (𝐹𝑢) ⊊ (𝐹𝑣)))
12 dfpss2 4045 . . . . . . . . . . . 12 ((𝐹𝑢) ⊊ (𝐹𝑣) ↔ ((𝐹𝑢) ⊆ (𝐹𝑣) ∧ ¬ (𝐹𝑢) = (𝐹𝑣)))
1312simprbi 497 . . . . . . . . . . 11 ((𝐹𝑢) ⊊ (𝐹𝑣) → ¬ (𝐹𝑢) = (𝐹𝑣))
14 eqcom 2743 . . . . . . . . . . 11 ((𝐹𝑢) = (𝐹𝑣) ↔ (𝐹𝑣) = (𝐹𝑢))
1513, 14sylnib 327 . . . . . . . . . 10 ((𝐹𝑢) ⊊ (𝐹𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢))
1611, 15syl6 35 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑣 ∈ ω ∧ 𝑢𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢)))
1716expdimp 453 . . . . . . . 8 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ 𝑣 ∈ ω) → (𝑢𝑣 → ¬ (𝐹𝑣) = (𝐹𝑢)))
1817adantrr 715 . . . . . . 7 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑢𝑣 → ¬ (𝐹𝑣) = (𝐹𝑢)))
1910, 18jaod 857 . . . . . 6 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝑣𝑢𝑢𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢)))
2019con2d 134 . . . . 5 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝐹𝑣) = (𝐹𝑢) → ¬ (𝑣𝑢𝑢𝑣)))
21 nnord 7810 . . . . . . 7 (𝑣 ∈ ω → Ord 𝑣)
22 nnord 7810 . . . . . . 7 (𝑢 ∈ ω → Ord 𝑢)
23 ordtri3 6353 . . . . . . 7 ((Ord 𝑣 ∧ Ord 𝑢) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2421, 22, 23syl2an 596 . . . . . 6 ((𝑣 ∈ ω ∧ 𝑢 ∈ ω) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2524adantl 482 . . . . 5 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2620, 25sylibrd 258 . . . 4 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢))
2726ralrimivva 3197 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢))
28 frfnom 8381 . . . . . 6 (rec(𝐺, ∅) ↾ ω) Fn ω
29 fneq1 6593 . . . . . 6 (𝐹 = (rec(𝐺, ∅) ↾ ω) → (𝐹 Fn ω ↔ (rec(𝐺, ∅) ↾ ω) Fn ω))
3028, 29mpbiri 257 . . . . 5 (𝐹 = (rec(𝐺, ∅) ↾ ω) → 𝐹 Fn ω)
31 fvelrnb 6903 . . . . . . . 8 (𝐹 Fn ω → (𝑢 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ω (𝐹𝑣) = 𝑢))
32 inf3lem.4 . . . . . . . . . . . 12 𝐵 ∈ V
331, 2, 4, 32inf3lemd 9563 . . . . . . . . . . 11 (𝑣 ∈ ω → (𝐹𝑣) ⊆ 𝑥)
34 fvex 6855 . . . . . . . . . . . 12 (𝐹𝑣) ∈ V
3534elpw 4564 . . . . . . . . . . 11 ((𝐹𝑣) ∈ 𝒫 𝑥 ↔ (𝐹𝑣) ⊆ 𝑥)
3633, 35sylibr 233 . . . . . . . . . 10 (𝑣 ∈ ω → (𝐹𝑣) ∈ 𝒫 𝑥)
37 eleq1 2825 . . . . . . . . . 10 ((𝐹𝑣) = 𝑢 → ((𝐹𝑣) ∈ 𝒫 𝑥𝑢 ∈ 𝒫 𝑥))
3836, 37syl5ibcom 244 . . . . . . . . 9 (𝑣 ∈ ω → ((𝐹𝑣) = 𝑢𝑢 ∈ 𝒫 𝑥))
3938rexlimiv 3145 . . . . . . . 8 (∃𝑣 ∈ ω (𝐹𝑣) = 𝑢𝑢 ∈ 𝒫 𝑥)
4031, 39syl6bi 252 . . . . . . 7 (𝐹 Fn ω → (𝑢 ∈ ran 𝐹𝑢 ∈ 𝒫 𝑥))
4140ssrdv 3950 . . . . . 6 (𝐹 Fn ω → ran 𝐹 ⊆ 𝒫 𝑥)
4241ancli 549 . . . . 5 (𝐹 Fn ω → (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥))
432, 30, 42mp2b 10 . . . 4 (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥)
44 df-f 6500 . . . 4 (𝐹:ω⟶𝒫 𝑥 ↔ (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥))
4543, 44mpbir 230 . . 3 𝐹:ω⟶𝒫 𝑥
4627, 45jctil 520 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹:ω⟶𝒫 𝑥 ∧ ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢)))
47 dff13 7202 . 2 (𝐹:ω–1-1→𝒫 𝑥 ↔ (𝐹:ω⟶𝒫 𝑥 ∧ ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢)))
4846, 47sylibr 233 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cin 3909  wss 3910  wpss 3911  c0 4282  𝒫 cpw 4560   cuni 4865  cmpt 5188  ran crn 5634  cres 5635  Ord word 6316   Fn wfn 6491  wf 6492  1-1wf1 6493  cfv 6496  ωcom 7802  reccrdg 8355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672  ax-reg 9528
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356
This theorem is referenced by:  inf3lem7  9570  dominf  10381  dominfac  10509
  Copyright terms: Public domain W3C validator