![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvnbtwn3 | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (cvnbtwn3 32013 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
lcvnbtwn3.p | ⊢ (𝜑 → 𝑅 ⊆ 𝑈) |
lcvnbtwn3.q | ⊢ (𝜑 → 𝑈 ⊊ 𝑇) |
Ref | Expression |
---|---|
lcvnbtwn3 | ⊢ (𝜑 → 𝑈 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvnbtwn3.p | . 2 ⊢ (𝜑 → 𝑅 ⊆ 𝑈) | |
2 | lcvnbtwn3.q | . 2 ⊢ (𝜑 → 𝑈 ⊊ 𝑇) | |
3 | lcvnbtwn.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lcvnbtwn.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
5 | lcvnbtwn.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
6 | lcvnbtwn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
7 | lcvnbtwn.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
8 | lcvnbtwn.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
9 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
10 | 3, 4, 5, 6, 7, 8, 9 | lcvnbtwn 38389 | . . 3 ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
11 | iman 401 | . . . 4 ⊢ (((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑅 = 𝑈) ↔ ¬ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) | |
12 | eqcom 2731 | . . . . 5 ⊢ (𝑈 = 𝑅 ↔ 𝑅 = 𝑈) | |
13 | 12 | imbi2i 336 | . . . 4 ⊢ (((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑈 = 𝑅) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑅 = 𝑈)) |
14 | dfpss2 4078 | . . . . . . 7 ⊢ (𝑅 ⊊ 𝑈 ↔ (𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈)) | |
15 | 14 | anbi1i 623 | . . . . . 6 ⊢ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈 ⊊ 𝑇)) |
16 | an32 643 | . . . . . 6 ⊢ (((𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) | |
17 | 15, 16 | bitri 275 | . . . . 5 ⊢ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) |
18 | 17 | notbii 320 | . . . 4 ⊢ (¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ¬ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) |
19 | 11, 13, 18 | 3bitr4ri 304 | . . 3 ⊢ (¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑈 = 𝑅)) |
20 | 10, 19 | sylib 217 | . 2 ⊢ (𝜑 → ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑈 = 𝑅)) |
21 | 1, 2, 20 | mp2and 696 | 1 ⊢ (𝜑 → 𝑈 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⊆ wss 3941 ⊊ wpss 3942 class class class wbr 5139 ‘cfv 6534 LSubSpclss 20770 ⋖L clcv 38382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fv 6542 df-lcv 38383 |
This theorem is referenced by: lsatcveq0 38396 lsatcvatlem 38413 |
Copyright terms: Public domain | W3C validator |