| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvnbtwn3 | Structured version Visualization version GIF version | ||
| Description: The covers relation implies no in-betweenness. (cvnbtwn3 32275 analog.) (Contributed by NM, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
| lcvnbtwn3.p | ⊢ (𝜑 → 𝑅 ⊆ 𝑈) |
| lcvnbtwn3.q | ⊢ (𝜑 → 𝑈 ⊊ 𝑇) |
| Ref | Expression |
|---|---|
| lcvnbtwn3 | ⊢ (𝜑 → 𝑈 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcvnbtwn3.p | . 2 ⊢ (𝜑 → 𝑅 ⊆ 𝑈) | |
| 2 | lcvnbtwn3.q | . 2 ⊢ (𝜑 → 𝑈 ⊊ 𝑇) | |
| 3 | lcvnbtwn.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | lcvnbtwn.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 5 | lcvnbtwn.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 6 | lcvnbtwn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
| 7 | lcvnbtwn.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 8 | lcvnbtwn.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 9 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
| 10 | 3, 4, 5, 6, 7, 8, 9 | lcvnbtwn 39130 | . . 3 ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
| 11 | iman 401 | . . . 4 ⊢ (((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑅 = 𝑈) ↔ ¬ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) | |
| 12 | eqcom 2738 | . . . . 5 ⊢ (𝑈 = 𝑅 ↔ 𝑅 = 𝑈) | |
| 13 | 12 | imbi2i 336 | . . . 4 ⊢ (((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑈 = 𝑅) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑅 = 𝑈)) |
| 14 | dfpss2 4037 | . . . . . . 7 ⊢ (𝑅 ⊊ 𝑈 ↔ (𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈)) | |
| 15 | 14 | anbi1i 624 | . . . . . 6 ⊢ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈 ⊊ 𝑇)) |
| 16 | an32 646 | . . . . . 6 ⊢ (((𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) | |
| 17 | 15, 16 | bitri 275 | . . . . 5 ⊢ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) |
| 18 | 17 | notbii 320 | . . . 4 ⊢ (¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ¬ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) |
| 19 | 11, 13, 18 | 3bitr4ri 304 | . . 3 ⊢ (¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑈 = 𝑅)) |
| 20 | 10, 19 | sylib 218 | . 2 ⊢ (𝜑 → ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑈 = 𝑅)) |
| 21 | 1, 2, 20 | mp2and 699 | 1 ⊢ (𝜑 → 𝑈 = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ⊊ wpss 3898 class class class wbr 5093 ‘cfv 6487 LSubSpclss 20870 ⋖L clcv 39123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6443 df-fun 6489 df-fv 6495 df-lcv 39124 |
| This theorem is referenced by: lsatcveq0 39137 lsatcvatlem 39154 |
| Copyright terms: Public domain | W3C validator |