Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvnbtwn3 | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (cvnbtwn3 30183 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
lcvnbtwn3.p | ⊢ (𝜑 → 𝑅 ⊆ 𝑈) |
lcvnbtwn3.q | ⊢ (𝜑 → 𝑈 ⊊ 𝑇) |
Ref | Expression |
---|---|
lcvnbtwn3 | ⊢ (𝜑 → 𝑈 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvnbtwn3.p | . 2 ⊢ (𝜑 → 𝑅 ⊆ 𝑈) | |
2 | lcvnbtwn3.q | . 2 ⊢ (𝜑 → 𝑈 ⊊ 𝑇) | |
3 | lcvnbtwn.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lcvnbtwn.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
5 | lcvnbtwn.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
6 | lcvnbtwn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
7 | lcvnbtwn.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
8 | lcvnbtwn.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
9 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
10 | 3, 4, 5, 6, 7, 8, 9 | lcvnbtwn 36635 | . . 3 ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
11 | iman 405 | . . . 4 ⊢ (((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑅 = 𝑈) ↔ ¬ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) | |
12 | eqcom 2765 | . . . . 5 ⊢ (𝑈 = 𝑅 ↔ 𝑅 = 𝑈) | |
13 | 12 | imbi2i 339 | . . . 4 ⊢ (((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑈 = 𝑅) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑅 = 𝑈)) |
14 | dfpss2 3993 | . . . . . . 7 ⊢ (𝑅 ⊊ 𝑈 ↔ (𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈)) | |
15 | 14 | anbi1i 626 | . . . . . 6 ⊢ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈 ⊊ 𝑇)) |
16 | an32 645 | . . . . . 6 ⊢ (((𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) | |
17 | 15, 16 | bitri 278 | . . . . 5 ⊢ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) |
18 | 17 | notbii 323 | . . . 4 ⊢ (¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ¬ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) ∧ ¬ 𝑅 = 𝑈)) |
19 | 11, 13, 18 | 3bitr4ri 307 | . . 3 ⊢ (¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑈 = 𝑅)) |
20 | 10, 19 | sylib 221 | . 2 ⊢ (𝜑 → ((𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇) → 𝑈 = 𝑅)) |
21 | 1, 2, 20 | mp2and 698 | 1 ⊢ (𝜑 → 𝑈 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 ⊊ wpss 3861 class class class wbr 5036 ‘cfv 6340 LSubSpclss 19784 ⋖L clcv 36628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-iota 6299 df-fun 6342 df-fv 6348 df-lcv 36629 |
This theorem is referenced by: lsatcveq0 36642 lsatcvatlem 36659 |
Copyright terms: Public domain | W3C validator |