Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvnbtwn3 Structured version   Visualization version   GIF version

Theorem lcvnbtwn3 38392
Description: The covers relation implies no in-betweenness. (cvnbtwn3 32013 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
lcvnbtwn3.p (𝜑𝑅𝑈)
lcvnbtwn3.q (𝜑𝑈𝑇)
Assertion
Ref Expression
lcvnbtwn3 (𝜑𝑈 = 𝑅)

Proof of Theorem lcvnbtwn3
StepHypRef Expression
1 lcvnbtwn3.p . 2 (𝜑𝑅𝑈)
2 lcvnbtwn3.q . 2 (𝜑𝑈𝑇)
3 lcvnbtwn.s . . . 4 𝑆 = (LSubSp‘𝑊)
4 lcvnbtwn.c . . . 4 𝐶 = ( ⋖L𝑊)
5 lcvnbtwn.w . . . 4 (𝜑𝑊𝑋)
6 lcvnbtwn.r . . . 4 (𝜑𝑅𝑆)
7 lcvnbtwn.t . . . 4 (𝜑𝑇𝑆)
8 lcvnbtwn.u . . . 4 (𝜑𝑈𝑆)
9 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
103, 4, 5, 6, 7, 8, 9lcvnbtwn 38389 . . 3 (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
11 iman 401 . . . 4 (((𝑅𝑈𝑈𝑇) → 𝑅 = 𝑈) ↔ ¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
12 eqcom 2731 . . . . 5 (𝑈 = 𝑅𝑅 = 𝑈)
1312imbi2i 336 . . . 4 (((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑅) ↔ ((𝑅𝑈𝑈𝑇) → 𝑅 = 𝑈))
14 dfpss2 4078 . . . . . . 7 (𝑅𝑈 ↔ (𝑅𝑈 ∧ ¬ 𝑅 = 𝑈))
1514anbi1i 623 . . . . . 6 ((𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈𝑇))
16 an32 643 . . . . . 6 (((𝑅𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
1715, 16bitri 275 . . . . 5 ((𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
1817notbii 320 . . . 4 (¬ (𝑅𝑈𝑈𝑇) ↔ ¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
1911, 13, 183bitr4ri 304 . . 3 (¬ (𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑅))
2010, 19sylib 217 . 2 (𝜑 → ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑅))
211, 2, 20mp2and 696 1 (𝜑𝑈 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  wss 3941  wpss 3942   class class class wbr 5139  cfv 6534  LSubSpclss 20770  L clcv 38382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-lcv 38383
This theorem is referenced by:  lsatcveq0  38396  lsatcvatlem  38413
  Copyright terms: Public domain W3C validator