Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvnbtwn3 Structured version   Visualization version   GIF version

Theorem lcvnbtwn3 39046
Description: The covers relation implies no in-betweenness. (cvnbtwn3 32258 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
lcvnbtwn3.p (𝜑𝑅𝑈)
lcvnbtwn3.q (𝜑𝑈𝑇)
Assertion
Ref Expression
lcvnbtwn3 (𝜑𝑈 = 𝑅)

Proof of Theorem lcvnbtwn3
StepHypRef Expression
1 lcvnbtwn3.p . 2 (𝜑𝑅𝑈)
2 lcvnbtwn3.q . 2 (𝜑𝑈𝑇)
3 lcvnbtwn.s . . . 4 𝑆 = (LSubSp‘𝑊)
4 lcvnbtwn.c . . . 4 𝐶 = ( ⋖L𝑊)
5 lcvnbtwn.w . . . 4 (𝜑𝑊𝑋)
6 lcvnbtwn.r . . . 4 (𝜑𝑅𝑆)
7 lcvnbtwn.t . . . 4 (𝜑𝑇𝑆)
8 lcvnbtwn.u . . . 4 (𝜑𝑈𝑆)
9 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
103, 4, 5, 6, 7, 8, 9lcvnbtwn 39043 . . 3 (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
11 iman 401 . . . 4 (((𝑅𝑈𝑈𝑇) → 𝑅 = 𝑈) ↔ ¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
12 eqcom 2737 . . . . 5 (𝑈 = 𝑅𝑅 = 𝑈)
1312imbi2i 336 . . . 4 (((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑅) ↔ ((𝑅𝑈𝑈𝑇) → 𝑅 = 𝑈))
14 dfpss2 4036 . . . . . . 7 (𝑅𝑈 ↔ (𝑅𝑈 ∧ ¬ 𝑅 = 𝑈))
1514anbi1i 624 . . . . . 6 ((𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈𝑇))
16 an32 646 . . . . . 6 (((𝑅𝑈 ∧ ¬ 𝑅 = 𝑈) ∧ 𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
1715, 16bitri 275 . . . . 5 ((𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
1817notbii 320 . . . 4 (¬ (𝑅𝑈𝑈𝑇) ↔ ¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑅 = 𝑈))
1911, 13, 183bitr4ri 304 . . 3 (¬ (𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑅))
2010, 19sylib 218 . 2 (𝜑 → ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑅))
211, 2, 20mp2and 699 1 (𝜑𝑈 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  wss 3900  wpss 3901   class class class wbr 5089  cfv 6477  LSubSpclss 20857  L clcv 39036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-lcv 39037
This theorem is referenced by:  lsatcveq0  39050  lsatcvatlem  39067
  Copyright terms: Public domain W3C validator