Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr2 Structured version   Visualization version   GIF version

Theorem lcvbr2 36963
Description: The covers relation for a left vector space (or a left module). (cvbr2 30546 analog.) (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvbr2 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈))))
Distinct variable groups:   𝑆,𝑠   𝑊,𝑠   𝑇,𝑠   𝑈,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem lcvbr2
StepHypRef Expression
1 lcvfbr.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lcvfbr.c . . 3 𝐶 = ( ⋖L𝑊)
3 lcvfbr.w . . 3 (𝜑𝑊𝑋)
4 lcvfbr.t . . 3 (𝜑𝑇𝑆)
5 lcvfbr.u . . 3 (𝜑𝑈𝑆)
61, 2, 3, 4, 5lcvbr 36962 . 2 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
7 iman 401 . . . . . 6 (((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ ¬ ((𝑇𝑠𝑠𝑈) ∧ ¬ 𝑠 = 𝑈))
8 anass 468 . . . . . . 7 (((𝑇𝑠𝑠𝑈) ∧ ¬ 𝑠 = 𝑈) ↔ (𝑇𝑠 ∧ (𝑠𝑈 ∧ ¬ 𝑠 = 𝑈)))
9 dfpss2 4016 . . . . . . . 8 (𝑠𝑈 ↔ (𝑠𝑈 ∧ ¬ 𝑠 = 𝑈))
109anbi2i 622 . . . . . . 7 ((𝑇𝑠𝑠𝑈) ↔ (𝑇𝑠 ∧ (𝑠𝑈 ∧ ¬ 𝑠 = 𝑈)))
118, 10bitr4i 277 . . . . . 6 (((𝑇𝑠𝑠𝑈) ∧ ¬ 𝑠 = 𝑈) ↔ (𝑇𝑠𝑠𝑈))
127, 11xchbinx 333 . . . . 5 (((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ ¬ (𝑇𝑠𝑠𝑈))
1312ralbii 3090 . . . 4 (∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ ∀𝑠𝑆 ¬ (𝑇𝑠𝑠𝑈))
14 ralnex 3163 . . . 4 (∀𝑠𝑆 ¬ (𝑇𝑠𝑠𝑈) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))
1513, 14bitri 274 . . 3 (∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))
1615anbi2i 622 . 2 ((𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈)) ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
176, 16bitr4di 288 1 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  wpss 3884   class class class wbr 5070  cfv 6418  LSubSpclss 20108  L clcv 36959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-lcv 36960
This theorem is referenced by:  lsmcv2  36970  lsat0cv  36974
  Copyright terms: Public domain W3C validator