| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvbr2 | Structured version Visualization version GIF version | ||
| Description: The covers relation for a left vector space (or a left module). (cvbr2 32219 analog.) (Contributed by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcvfbr.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lcvfbr.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lcvfbr.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| lcvfbr.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lcvfbr.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| lcvbr2 | ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcvfbr.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | lcvfbr.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 3 | lcvfbr.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 4 | lcvfbr.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 5 | lcvfbr.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 6 | 1, 2, 3, 4, 5 | lcvbr 39006 | . 2 ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) |
| 7 | iman 401 | . . . . . 6 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ¬ ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ 𝑠 = 𝑈)) | |
| 8 | anass 468 | . . . . . . 7 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ 𝑠 = 𝑈) ↔ (𝑇 ⊊ 𝑠 ∧ (𝑠 ⊆ 𝑈 ∧ ¬ 𝑠 = 𝑈))) | |
| 9 | dfpss2 4059 | . . . . . . . 8 ⊢ (𝑠 ⊊ 𝑈 ↔ (𝑠 ⊆ 𝑈 ∧ ¬ 𝑠 = 𝑈)) | |
| 10 | 9 | anbi2i 623 | . . . . . . 7 ⊢ ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈) ↔ (𝑇 ⊊ 𝑠 ∧ (𝑠 ⊆ 𝑈 ∧ ¬ 𝑠 = 𝑈))) |
| 11 | 8, 10 | bitr4i 278 | . . . . . 6 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ 𝑠 = 𝑈) ↔ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
| 12 | 7, 11 | xchbinx 334 | . . . . 5 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
| 13 | 12 | ralbii 3077 | . . . 4 ⊢ (∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ∀𝑠 ∈ 𝑆 ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
| 14 | ralnex 3057 | . . . 4 ⊢ (∀𝑠 ∈ 𝑆 ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈) ↔ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) | |
| 15 | 13, 14 | bitri 275 | . . 3 ⊢ (∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
| 16 | 15 | anbi2i 623 | . 2 ⊢ ((𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)) ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
| 17 | 6, 16 | bitr4di 289 | 1 ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∃wrex 3055 ⊆ wss 3922 ⊊ wpss 3923 class class class wbr 5115 ‘cfv 6519 LSubSpclss 20843 ⋖L clcv 39003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-lcv 39004 |
| This theorem is referenced by: lsmcv2 39014 lsat0cv 39018 |
| Copyright terms: Public domain | W3C validator |