![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvbr2 | Structured version Visualization version GIF version |
Description: The covers relation for a left vector space (or a left module). (cvbr2 32106 analog.) (Contributed by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
lcvfbr.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvfbr.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvfbr.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvfbr.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvfbr.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
lcvbr2 | ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvfbr.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | lcvfbr.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
3 | lcvfbr.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
4 | lcvfbr.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
5 | lcvfbr.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
6 | 1, 2, 3, 4, 5 | lcvbr 38493 | . 2 ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) |
7 | iman 401 | . . . . . 6 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ¬ ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ 𝑠 = 𝑈)) | |
8 | anass 468 | . . . . . . 7 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ 𝑠 = 𝑈) ↔ (𝑇 ⊊ 𝑠 ∧ (𝑠 ⊆ 𝑈 ∧ ¬ 𝑠 = 𝑈))) | |
9 | dfpss2 4083 | . . . . . . . 8 ⊢ (𝑠 ⊊ 𝑈 ↔ (𝑠 ⊆ 𝑈 ∧ ¬ 𝑠 = 𝑈)) | |
10 | 9 | anbi2i 622 | . . . . . . 7 ⊢ ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈) ↔ (𝑇 ⊊ 𝑠 ∧ (𝑠 ⊆ 𝑈 ∧ ¬ 𝑠 = 𝑈))) |
11 | 8, 10 | bitr4i 278 | . . . . . 6 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ 𝑠 = 𝑈) ↔ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
12 | 7, 11 | xchbinx 334 | . . . . 5 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
13 | 12 | ralbii 3090 | . . . 4 ⊢ (∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ∀𝑠 ∈ 𝑆 ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
14 | ralnex 3069 | . . . 4 ⊢ (∀𝑠 ∈ 𝑆 ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈) ↔ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) | |
15 | 13, 14 | bitri 275 | . . 3 ⊢ (∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
16 | 15 | anbi2i 622 | . 2 ⊢ ((𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)) ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
17 | 6, 16 | bitr4di 289 | 1 ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 ⊆ wss 3947 ⊊ wpss 3948 class class class wbr 5148 ‘cfv 6548 LSubSpclss 20815 ⋖L clcv 38490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-lcv 38491 |
This theorem is referenced by: lsmcv2 38501 lsat0cv 38505 |
Copyright terms: Public domain | W3C validator |