Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr2 Structured version   Visualization version   GIF version

Theorem lcvbr2 38964
Description: The covers relation for a left vector space (or a left module). (cvbr2 32249 analog.) (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvbr2 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈))))
Distinct variable groups:   𝑆,𝑠   𝑊,𝑠   𝑇,𝑠   𝑈,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem lcvbr2
StepHypRef Expression
1 lcvfbr.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lcvfbr.c . . 3 𝐶 = ( ⋖L𝑊)
3 lcvfbr.w . . 3 (𝜑𝑊𝑋)
4 lcvfbr.t . . 3 (𝜑𝑇𝑆)
5 lcvfbr.u . . 3 (𝜑𝑈𝑆)
61, 2, 3, 4, 5lcvbr 38963 . 2 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
7 iman 401 . . . . . 6 (((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ ¬ ((𝑇𝑠𝑠𝑈) ∧ ¬ 𝑠 = 𝑈))
8 anass 468 . . . . . . 7 (((𝑇𝑠𝑠𝑈) ∧ ¬ 𝑠 = 𝑈) ↔ (𝑇𝑠 ∧ (𝑠𝑈 ∧ ¬ 𝑠 = 𝑈)))
9 dfpss2 4070 . . . . . . . 8 (𝑠𝑈 ↔ (𝑠𝑈 ∧ ¬ 𝑠 = 𝑈))
109anbi2i 623 . . . . . . 7 ((𝑇𝑠𝑠𝑈) ↔ (𝑇𝑠 ∧ (𝑠𝑈 ∧ ¬ 𝑠 = 𝑈)))
118, 10bitr4i 278 . . . . . 6 (((𝑇𝑠𝑠𝑈) ∧ ¬ 𝑠 = 𝑈) ↔ (𝑇𝑠𝑠𝑈))
127, 11xchbinx 334 . . . . 5 (((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ ¬ (𝑇𝑠𝑠𝑈))
1312ralbii 3081 . . . 4 (∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ ∀𝑠𝑆 ¬ (𝑇𝑠𝑠𝑈))
14 ralnex 3061 . . . 4 (∀𝑠𝑆 ¬ (𝑇𝑠𝑠𝑈) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))
1513, 14bitri 275 . . 3 (∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))
1615anbi2i 623 . 2 ((𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈)) ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
176, 16bitr4di 289 1 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3933  wpss 3934   class class class wbr 5125  cfv 6542  LSubSpclss 20902  L clcv 38960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-lcv 38961
This theorem is referenced by:  lsmcv2  38971  lsat0cv  38975
  Copyright terms: Public domain W3C validator