Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvbr2 | Structured version Visualization version GIF version |
Description: The covers relation for a left vector space (or a left module). (cvbr2 30624 analog.) (Contributed by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
lcvfbr.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvfbr.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvfbr.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvfbr.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvfbr.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
lcvbr2 | ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvfbr.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | lcvfbr.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
3 | lcvfbr.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
4 | lcvfbr.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
5 | lcvfbr.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
6 | 1, 2, 3, 4, 5 | lcvbr 37014 | . 2 ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) |
7 | iman 401 | . . . . . 6 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ¬ ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ 𝑠 = 𝑈)) | |
8 | anass 468 | . . . . . . 7 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ 𝑠 = 𝑈) ↔ (𝑇 ⊊ 𝑠 ∧ (𝑠 ⊆ 𝑈 ∧ ¬ 𝑠 = 𝑈))) | |
9 | dfpss2 4024 | . . . . . . . 8 ⊢ (𝑠 ⊊ 𝑈 ↔ (𝑠 ⊆ 𝑈 ∧ ¬ 𝑠 = 𝑈)) | |
10 | 9 | anbi2i 622 | . . . . . . 7 ⊢ ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈) ↔ (𝑇 ⊊ 𝑠 ∧ (𝑠 ⊆ 𝑈 ∧ ¬ 𝑠 = 𝑈))) |
11 | 8, 10 | bitr4i 277 | . . . . . 6 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ 𝑠 = 𝑈) ↔ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
12 | 7, 11 | xchbinx 333 | . . . . 5 ⊢ (((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
13 | 12 | ralbii 3092 | . . . 4 ⊢ (∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ∀𝑠 ∈ 𝑆 ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
14 | ralnex 3165 | . . . 4 ⊢ (∀𝑠 ∈ 𝑆 ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈) ↔ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) | |
15 | 13, 14 | bitri 274 | . . 3 ⊢ (∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈) ↔ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
16 | 15 | anbi2i 622 | . 2 ⊢ ((𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)) ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
17 | 6, 16 | bitr4di 288 | 1 ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 ⊆ wss 3891 ⊊ wpss 3892 class class class wbr 5078 ‘cfv 6430 LSubSpclss 20174 ⋖L clcv 37011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-lcv 37012 |
This theorem is referenced by: lsmcv2 37022 lsat0cv 37026 |
Copyright terms: Public domain | W3C validator |