Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvnbtwn2 Structured version   Visualization version   GIF version

Theorem lcvnbtwn2 37041
Description: The covers relation implies no in-betweenness. (cvnbtwn2 30649 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
lcvnbtwn2.p (𝜑𝑅𝑈)
lcvnbtwn2.q (𝜑𝑈𝑇)
Assertion
Ref Expression
lcvnbtwn2 (𝜑𝑈 = 𝑇)

Proof of Theorem lcvnbtwn2
StepHypRef Expression
1 lcvnbtwn2.p . 2 (𝜑𝑅𝑈)
2 lcvnbtwn2.q . 2 (𝜑𝑈𝑇)
3 lcvnbtwn.s . . . 4 𝑆 = (LSubSp‘𝑊)
4 lcvnbtwn.c . . . 4 𝐶 = ( ⋖L𝑊)
5 lcvnbtwn.w . . . 4 (𝜑𝑊𝑋)
6 lcvnbtwn.r . . . 4 (𝜑𝑅𝑆)
7 lcvnbtwn.t . . . 4 (𝜑𝑇𝑆)
8 lcvnbtwn.u . . . 4 (𝜑𝑈𝑆)
9 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
103, 4, 5, 6, 7, 8, 9lcvnbtwn 37039 . . 3 (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
11 iman 402 . . . 4 (((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑇) ↔ ¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇))
12 anass 469 . . . . . 6 (((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ (𝑅𝑈 ∧ (𝑈𝑇 ∧ ¬ 𝑈 = 𝑇)))
13 dfpss2 4020 . . . . . . 7 (𝑈𝑇 ↔ (𝑈𝑇 ∧ ¬ 𝑈 = 𝑇))
1413anbi2i 623 . . . . . 6 ((𝑅𝑈𝑈𝑇) ↔ (𝑅𝑈 ∧ (𝑈𝑇 ∧ ¬ 𝑈 = 𝑇)))
1512, 14bitr4i 277 . . . . 5 (((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ (𝑅𝑈𝑈𝑇))
1615notbii 320 . . . 4 (¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ ¬ (𝑅𝑈𝑈𝑇))
1711, 16bitr2i 275 . . 3 (¬ (𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑇))
1810, 17sylib 217 . 2 (𝜑 → ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑇))
191, 2, 18mp2and 696 1 (𝜑𝑈 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  wpss 3888   class class class wbr 5074  cfv 6433  LSubSpclss 20193  L clcv 37032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-lcv 37033
This theorem is referenced by:  lcvat  37044  lsatexch  37057
  Copyright terms: Public domain W3C validator