Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvnbtwn2 | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (cvnbtwn2 30550 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
lcvnbtwn2.p | ⊢ (𝜑 → 𝑅 ⊊ 𝑈) |
lcvnbtwn2.q | ⊢ (𝜑 → 𝑈 ⊆ 𝑇) |
Ref | Expression |
---|---|
lcvnbtwn2 | ⊢ (𝜑 → 𝑈 = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvnbtwn2.p | . 2 ⊢ (𝜑 → 𝑅 ⊊ 𝑈) | |
2 | lcvnbtwn2.q | . 2 ⊢ (𝜑 → 𝑈 ⊆ 𝑇) | |
3 | lcvnbtwn.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lcvnbtwn.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
5 | lcvnbtwn.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
6 | lcvnbtwn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
7 | lcvnbtwn.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
8 | lcvnbtwn.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
9 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
10 | 3, 4, 5, 6, 7, 8, 9 | lcvnbtwn 36966 | . . 3 ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
11 | iman 401 | . . . 4 ⊢ (((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) → 𝑈 = 𝑇) ↔ ¬ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) ∧ ¬ 𝑈 = 𝑇)) | |
12 | anass 468 | . . . . . 6 ⊢ (((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ (𝑅 ⊊ 𝑈 ∧ (𝑈 ⊆ 𝑇 ∧ ¬ 𝑈 = 𝑇))) | |
13 | dfpss2 4016 | . . . . . . 7 ⊢ (𝑈 ⊊ 𝑇 ↔ (𝑈 ⊆ 𝑇 ∧ ¬ 𝑈 = 𝑇)) | |
14 | 13 | anbi2i 622 | . . . . . 6 ⊢ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ (𝑅 ⊊ 𝑈 ∧ (𝑈 ⊆ 𝑇 ∧ ¬ 𝑈 = 𝑇))) |
15 | 12, 14 | bitr4i 277 | . . . . 5 ⊢ (((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
16 | 15 | notbii 319 | . . . 4 ⊢ (¬ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
17 | 11, 16 | bitr2i 275 | . . 3 ⊢ (¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) → 𝑈 = 𝑇)) |
18 | 10, 17 | sylib 217 | . 2 ⊢ (𝜑 → ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) → 𝑈 = 𝑇)) |
19 | 1, 2, 18 | mp2and 695 | 1 ⊢ (𝜑 → 𝑈 = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ⊊ wpss 3884 class class class wbr 5070 ‘cfv 6418 LSubSpclss 20108 ⋖L clcv 36959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-lcv 36960 |
This theorem is referenced by: lcvat 36971 lsatexch 36984 |
Copyright terms: Public domain | W3C validator |