Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvnbtwn2 Structured version   Visualization version   GIF version

Theorem lcvnbtwn2 39027
Description: The covers relation implies no in-betweenness. (cvnbtwn2 32223 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
lcvnbtwn2.p (𝜑𝑅𝑈)
lcvnbtwn2.q (𝜑𝑈𝑇)
Assertion
Ref Expression
lcvnbtwn2 (𝜑𝑈 = 𝑇)

Proof of Theorem lcvnbtwn2
StepHypRef Expression
1 lcvnbtwn2.p . 2 (𝜑𝑅𝑈)
2 lcvnbtwn2.q . 2 (𝜑𝑈𝑇)
3 lcvnbtwn.s . . . 4 𝑆 = (LSubSp‘𝑊)
4 lcvnbtwn.c . . . 4 𝐶 = ( ⋖L𝑊)
5 lcvnbtwn.w . . . 4 (𝜑𝑊𝑋)
6 lcvnbtwn.r . . . 4 (𝜑𝑅𝑆)
7 lcvnbtwn.t . . . 4 (𝜑𝑇𝑆)
8 lcvnbtwn.u . . . 4 (𝜑𝑈𝑆)
9 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
103, 4, 5, 6, 7, 8, 9lcvnbtwn 39025 . . 3 (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
11 iman 401 . . . 4 (((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑇) ↔ ¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇))
12 anass 468 . . . . . 6 (((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ (𝑅𝑈 ∧ (𝑈𝑇 ∧ ¬ 𝑈 = 𝑇)))
13 dfpss2 4054 . . . . . . 7 (𝑈𝑇 ↔ (𝑈𝑇 ∧ ¬ 𝑈 = 𝑇))
1413anbi2i 623 . . . . . 6 ((𝑅𝑈𝑈𝑇) ↔ (𝑅𝑈 ∧ (𝑈𝑇 ∧ ¬ 𝑈 = 𝑇)))
1512, 14bitr4i 278 . . . . 5 (((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ (𝑅𝑈𝑈𝑇))
1615notbii 320 . . . 4 (¬ ((𝑅𝑈𝑈𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ ¬ (𝑅𝑈𝑈𝑇))
1711, 16bitr2i 276 . . 3 (¬ (𝑅𝑈𝑈𝑇) ↔ ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑇))
1810, 17sylib 218 . 2 (𝜑 → ((𝑅𝑈𝑈𝑇) → 𝑈 = 𝑇))
191, 2, 18mp2and 699 1 (𝜑𝑈 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917  wpss 3918   class class class wbr 5110  cfv 6514  LSubSpclss 20844  L clcv 39018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-lcv 39019
This theorem is referenced by:  lcvat  39030  lsatexch  39043
  Copyright terms: Public domain W3C validator