![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvnbtwn2 | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (cvnbtwn2 32315 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
lcvnbtwn2.p | ⊢ (𝜑 → 𝑅 ⊊ 𝑈) |
lcvnbtwn2.q | ⊢ (𝜑 → 𝑈 ⊆ 𝑇) |
Ref | Expression |
---|---|
lcvnbtwn2 | ⊢ (𝜑 → 𝑈 = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvnbtwn2.p | . 2 ⊢ (𝜑 → 𝑅 ⊊ 𝑈) | |
2 | lcvnbtwn2.q | . 2 ⊢ (𝜑 → 𝑈 ⊆ 𝑇) | |
3 | lcvnbtwn.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lcvnbtwn.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
5 | lcvnbtwn.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
6 | lcvnbtwn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
7 | lcvnbtwn.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
8 | lcvnbtwn.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
9 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
10 | 3, 4, 5, 6, 7, 8, 9 | lcvnbtwn 39006 | . . 3 ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
11 | iman 401 | . . . 4 ⊢ (((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) → 𝑈 = 𝑇) ↔ ¬ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) ∧ ¬ 𝑈 = 𝑇)) | |
12 | anass 468 | . . . . . 6 ⊢ (((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ (𝑅 ⊊ 𝑈 ∧ (𝑈 ⊆ 𝑇 ∧ ¬ 𝑈 = 𝑇))) | |
13 | dfpss2 4097 | . . . . . . 7 ⊢ (𝑈 ⊊ 𝑇 ↔ (𝑈 ⊆ 𝑇 ∧ ¬ 𝑈 = 𝑇)) | |
14 | 13 | anbi2i 623 | . . . . . 6 ⊢ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ (𝑅 ⊊ 𝑈 ∧ (𝑈 ⊆ 𝑇 ∧ ¬ 𝑈 = 𝑇))) |
15 | 12, 14 | bitr4i 278 | . . . . 5 ⊢ (((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
16 | 15 | notbii 320 | . . . 4 ⊢ (¬ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) ∧ ¬ 𝑈 = 𝑇) ↔ ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
17 | 11, 16 | bitr2i 276 | . . 3 ⊢ (¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇) ↔ ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) → 𝑈 = 𝑇)) |
18 | 10, 17 | sylib 218 | . 2 ⊢ (𝜑 → ((𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇) → 𝑈 = 𝑇)) |
19 | 1, 2, 18 | mp2and 699 | 1 ⊢ (𝜑 → 𝑈 = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 ⊊ wpss 3963 class class class wbr 5147 ‘cfv 6562 LSubSpclss 20946 ⋖L clcv 38999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-lcv 39000 |
This theorem is referenced by: lcvat 39011 lsatexch 39024 |
Copyright terms: Public domain | W3C validator |