MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imapss Structured version   Visualization version   GIF version

Theorem f1imapss 7244
Description: Taking images under a one-to-one function preserves proper subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imapss ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊊ (𝐹𝐷) ↔ 𝐶𝐷))

Proof of Theorem f1imapss
StepHypRef Expression
1 f1imass 7242 . . 3 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
2 f1imaeq 7243 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))
32notbid 318 . . 3 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (¬ (𝐹𝐶) = (𝐹𝐷) ↔ ¬ 𝐶 = 𝐷))
41, 3anbi12d 632 . 2 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐶) ⊆ (𝐹𝐷) ∧ ¬ (𝐹𝐶) = (𝐹𝐷)) ↔ (𝐶𝐷 ∧ ¬ 𝐶 = 𝐷)))
5 dfpss2 4054 . 2 ((𝐹𝐶) ⊊ (𝐹𝐷) ↔ ((𝐹𝐶) ⊆ (𝐹𝐷) ∧ ¬ (𝐹𝐶) = (𝐹𝐷)))
6 dfpss2 4054 . 2 (𝐶𝐷 ↔ (𝐶𝐷 ∧ ¬ 𝐶 = 𝐷))
74, 5, 63bitr4g 314 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊊ (𝐹𝐷) ↔ 𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wss 3917  wpss 3918  cima 5644  1-1wf1 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fv 6522
This theorem is referenced by:  fin4en1  10269
  Copyright terms: Public domain W3C validator