| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1imapss | Structured version Visualization version GIF version | ||
| Description: Taking images under a one-to-one function preserves proper subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
| Ref | Expression |
|---|---|
| f1imapss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊊ (𝐹 “ 𝐷) ↔ 𝐶 ⊊ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1imass 7241 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ↔ 𝐶 ⊆ 𝐷)) | |
| 2 | f1imaeq 7242 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ 𝐶 = 𝐷)) | |
| 3 | 2 | notbid 318 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → (¬ (𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ ¬ 𝐶 = 𝐷)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → (((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ ¬ (𝐹 “ 𝐶) = (𝐹 “ 𝐷)) ↔ (𝐶 ⊆ 𝐷 ∧ ¬ 𝐶 = 𝐷))) |
| 5 | dfpss2 4053 | . 2 ⊢ ((𝐹 “ 𝐶) ⊊ (𝐹 “ 𝐷) ↔ ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ ¬ (𝐹 “ 𝐶) = (𝐹 “ 𝐷))) | |
| 6 | dfpss2 4053 | . 2 ⊢ (𝐶 ⊊ 𝐷 ↔ (𝐶 ⊆ 𝐷 ∧ ¬ 𝐶 = 𝐷)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊊ (𝐹 “ 𝐷) ↔ 𝐶 ⊊ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3916 ⊊ wpss 3917 “ cima 5643 –1-1→wf1 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fv 6521 |
| This theorem is referenced by: fin4en1 10268 |
| Copyright terms: Public domain | W3C validator |