MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imapss Structured version   Visualization version   GIF version

Theorem f1imapss 7209
Description: Taking images under a one-to-one function preserves proper subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imapss ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊊ (𝐹𝐷) ↔ 𝐶𝐷))

Proof of Theorem f1imapss
StepHypRef Expression
1 f1imass 7207 . . 3 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
2 f1imaeq 7208 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))
32notbid 318 . . 3 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (¬ (𝐹𝐶) = (𝐹𝐷) ↔ ¬ 𝐶 = 𝐷))
41, 3anbi12d 632 . 2 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐶) ⊆ (𝐹𝐷) ∧ ¬ (𝐹𝐶) = (𝐹𝐷)) ↔ (𝐶𝐷 ∧ ¬ 𝐶 = 𝐷)))
5 dfpss2 4037 . 2 ((𝐹𝐶) ⊊ (𝐹𝐷) ↔ ((𝐹𝐶) ⊆ (𝐹𝐷) ∧ ¬ (𝐹𝐶) = (𝐹𝐷)))
6 dfpss2 4037 . 2 (𝐶𝐷 ↔ (𝐶𝐷 ∧ ¬ 𝐶 = 𝐷))
74, 5, 63bitr4g 314 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊊ (𝐹𝐷) ↔ 𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wss 3898  wpss 3899  cima 5624  1-1wf1 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fv 6497
This theorem is referenced by:  fin4en1  10211
  Copyright terms: Public domain W3C validator