![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1imapss | Structured version Visualization version GIF version |
Description: Taking images under a one-to-one function preserves proper subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
f1imapss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊊ (𝐹 “ 𝐷) ↔ 𝐶 ⊊ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1imass 7291 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ↔ 𝐶 ⊆ 𝐷)) | |
2 | f1imaeq 7292 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ 𝐶 = 𝐷)) | |
3 | 2 | notbid 318 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → (¬ (𝐹 “ 𝐶) = (𝐹 “ 𝐷) ↔ ¬ 𝐶 = 𝐷)) |
4 | 1, 3 | anbi12d 632 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → (((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ ¬ (𝐹 “ 𝐶) = (𝐹 “ 𝐷)) ↔ (𝐶 ⊆ 𝐷 ∧ ¬ 𝐶 = 𝐷))) |
5 | dfpss2 4101 | . 2 ⊢ ((𝐹 “ 𝐶) ⊊ (𝐹 “ 𝐷) ↔ ((𝐹 “ 𝐶) ⊆ (𝐹 “ 𝐷) ∧ ¬ (𝐹 “ 𝐶) = (𝐹 “ 𝐷))) | |
6 | dfpss2 4101 | . 2 ⊢ (𝐶 ⊊ 𝐷 ↔ (𝐶 ⊆ 𝐷 ∧ ¬ 𝐶 = 𝐷)) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → ((𝐹 “ 𝐶) ⊊ (𝐹 “ 𝐷) ↔ 𝐶 ⊊ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ⊆ wss 3966 ⊊ wpss 3967 “ cima 5696 –1-1→wf1 6566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fv 6577 |
This theorem is referenced by: fin4en1 10356 |
Copyright terms: Public domain | W3C validator |