MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsdomo Structured version   Visualization version   GIF version

Theorem nnsdomo 9132
Description: Cardinal ordering agrees with natural number ordering. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
nnsdomo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nnsdomo
StepHypRef Expression
1 nndomo 9131 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
2 nneneq 9120 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
32notbid 318 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐴𝐵 ↔ ¬ 𝐴 = 𝐵))
41, 3anbi12d 632 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ∧ ¬ 𝐴𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵)))
5 brsdom 8900 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
6 dfpss2 4039 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
74, 5, 63bitr4g 314 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3903  wpss 3904   class class class wbr 5092  ωcom 7799  cen 8869  cdom 8870  csdm 8871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876
This theorem is referenced by:  findcard3  9172  satfun  35388
  Copyright terms: Public domain W3C validator