MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem25 Structured version   Visualization version   GIF version

Theorem fin23lem25 10218
Description: Lemma for fin23 10283. In a chain of finite sets, equinumerosity is equivalent to equality. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
fin23lem25 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem fin23lem25
StepHypRef Expression
1 dfpss2 4039 . . . . . . . 8 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
2 php3 9123 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
3 sdomnen 8906 . . . . . . . . . 10 (𝐴𝐵 → ¬ 𝐴𝐵)
42, 3syl 17 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐴𝐵)
54ex 412 . . . . . . . 8 (𝐵 ∈ Fin → (𝐴𝐵 → ¬ 𝐴𝐵))
61, 5biimtrrid 243 . . . . . . 7 (𝐵 ∈ Fin → ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
76adantl 481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
87expd 415 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
9 dfpss2 4039 . . . . . . . . 9 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
10 eqcom 2736 . . . . . . . . . . 11 (𝐵 = 𝐴𝐴 = 𝐵)
1110notbii 320 . . . . . . . . . 10 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵)
1211anbi2i 623 . . . . . . . . 9 ((𝐵𝐴 ∧ ¬ 𝐵 = 𝐴) ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
139, 12bitri 275 . . . . . . . 8 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
14 php3 9123 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
15 sdomnen 8906 . . . . . . . . . . 11 (𝐵𝐴 → ¬ 𝐵𝐴)
16 ensym 8928 . . . . . . . . . . 11 (𝐴𝐵𝐵𝐴)
1715, 16nsyl 140 . . . . . . . . . 10 (𝐵𝐴 → ¬ 𝐴𝐵)
1814, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
1918ex 412 . . . . . . . 8 (𝐴 ∈ Fin → (𝐵𝐴 → ¬ 𝐴𝐵))
2013, 19biimtrrid 243 . . . . . . 7 (𝐴 ∈ Fin → ((𝐵𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
2120adantr 480 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
2221expd 415 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
238, 22jaod 859 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵𝐵𝐴) → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
24233impia 1117 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵))
2524con4d 115 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))
26 eqeng 8911 . . 3 (𝐴 ∈ Fin → (𝐴 = 𝐵𝐴𝐵))
27263ad2ant1 1133 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴 = 𝐵𝐴𝐵))
2825, 27impbid 212 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wss 3903  wpss 3904   class class class wbr 5092  cen 8869  csdm 8871  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876
This theorem is referenced by:  fin23lem23  10220  fin1a2lem9  10302
  Copyright terms: Public domain W3C validator