Proof of Theorem fin23lem25
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dfpss2 4088 | . . . . . . . 8
⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | 
| 2 |  | php3 9249 | . . . . . . . . . 10
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊊ 𝐵) → 𝐴 ≺ 𝐵) | 
| 3 |  | sdomnen 9021 | . . . . . . . . . 10
⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | 
| 4 | 2, 3 | syl 17 | . . . . . . . . 9
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊊ 𝐵) → ¬ 𝐴 ≈ 𝐵) | 
| 5 | 4 | ex 412 | . . . . . . . 8
⊢ (𝐵 ∈ Fin → (𝐴 ⊊ 𝐵 → ¬ 𝐴 ≈ 𝐵)) | 
| 6 | 1, 5 | biimtrrid 243 | . . . . . . 7
⊢ (𝐵 ∈ Fin → ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ≈ 𝐵)) | 
| 7 | 6 | adantl 481 | . . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ≈ 𝐵)) | 
| 8 | 7 | expd 415 | . . . . 5
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵))) | 
| 9 |  | dfpss2 4088 | . . . . . . . . 9
⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴)) | 
| 10 |  | eqcom 2744 | . . . . . . . . . . 11
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | 
| 11 | 10 | notbii 320 | . . . . . . . . . 10
⊢ (¬
𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵) | 
| 12 | 11 | anbi2i 623 | . . . . . . . . 9
⊢ ((𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵)) | 
| 13 | 9, 12 | bitri 275 | . . . . . . . 8
⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵)) | 
| 14 |  | php3 9249 | . . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | 
| 15 |  | sdomnen 9021 | . . . . . . . . . . 11
⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | 
| 16 |  | ensym 9043 | . . . . . . . . . . 11
⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | 
| 17 | 15, 16 | nsyl 140 | . . . . . . . . . 10
⊢ (𝐵 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐵) | 
| 18 | 14, 17 | syl 17 | . . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | 
| 19 | 18 | ex 412 | . . . . . . . 8
⊢ (𝐴 ∈ Fin → (𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵)) | 
| 20 | 13, 19 | biimtrrid 243 | . . . . . . 7
⊢ (𝐴 ∈ Fin → ((𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ≈ 𝐵)) | 
| 21 | 20 | adantr 480 | . . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ≈ 𝐵)) | 
| 22 | 21 | expd 415 | . . . . 5
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 ⊆ 𝐴 → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵))) | 
| 23 | 8, 22 | jaod 860 | . . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵))) | 
| 24 | 23 | 3impia 1118 | . . 3
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵)) | 
| 25 | 24 | con4d 115 | . 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≈ 𝐵 → 𝐴 = 𝐵)) | 
| 26 |  | eqeng 9026 | . . 3
⊢ (𝐴 ∈ Fin → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) | 
| 27 | 26 | 3ad2ant1 1134 | . 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) | 
| 28 | 25, 27 | impbid 212 | 1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) |