MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem25 Structured version   Visualization version   GIF version

Theorem fin23lem25 10343
Description: Lemma for fin23 10408. In a chain of finite sets, equinumerosity is equivalent to equality. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
fin23lem25 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem fin23lem25
StepHypRef Expression
1 dfpss2 4068 . . . . . . . 8 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
2 php3 9228 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
3 sdomnen 9000 . . . . . . . . . 10 (𝐴𝐵 → ¬ 𝐴𝐵)
42, 3syl 17 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐴𝐵)
54ex 412 . . . . . . . 8 (𝐵 ∈ Fin → (𝐴𝐵 → ¬ 𝐴𝐵))
61, 5biimtrrid 243 . . . . . . 7 (𝐵 ∈ Fin → ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
76adantl 481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
87expd 415 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
9 dfpss2 4068 . . . . . . . . 9 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
10 eqcom 2743 . . . . . . . . . . 11 (𝐵 = 𝐴𝐴 = 𝐵)
1110notbii 320 . . . . . . . . . 10 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵)
1211anbi2i 623 . . . . . . . . 9 ((𝐵𝐴 ∧ ¬ 𝐵 = 𝐴) ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
139, 12bitri 275 . . . . . . . 8 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
14 php3 9228 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
15 sdomnen 9000 . . . . . . . . . . 11 (𝐵𝐴 → ¬ 𝐵𝐴)
16 ensym 9022 . . . . . . . . . . 11 (𝐴𝐵𝐵𝐴)
1715, 16nsyl 140 . . . . . . . . . 10 (𝐵𝐴 → ¬ 𝐴𝐵)
1814, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
1918ex 412 . . . . . . . 8 (𝐴 ∈ Fin → (𝐵𝐴 → ¬ 𝐴𝐵))
2013, 19biimtrrid 243 . . . . . . 7 (𝐴 ∈ Fin → ((𝐵𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
2120adantr 480 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
2221expd 415 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
238, 22jaod 859 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵𝐵𝐴) → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
24233impia 1117 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵))
2524con4d 115 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))
26 eqeng 9005 . . 3 (𝐴 ∈ Fin → (𝐴 = 𝐵𝐴𝐵))
27263ad2ant1 1133 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴 = 𝐵𝐴𝐵))
2825, 27impbid 212 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wss 3931  wpss 3932   class class class wbr 5124  cen 8961  csdm 8963  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968
This theorem is referenced by:  fin23lem23  10345  fin1a2lem9  10427
  Copyright terms: Public domain W3C validator