MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem25 Structured version   Visualization version   GIF version

Theorem fin23lem25 10080
Description: Lemma for fin23 10145. In a chain of finite sets, equinumerosity is equivalent to equality. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
fin23lem25 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem fin23lem25
StepHypRef Expression
1 dfpss2 4020 . . . . . . . 8 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
2 php3 8995 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
3 sdomnen 8769 . . . . . . . . . 10 (𝐴𝐵 → ¬ 𝐴𝐵)
42, 3syl 17 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐴𝐵)
54ex 413 . . . . . . . 8 (𝐵 ∈ Fin → (𝐴𝐵 → ¬ 𝐴𝐵))
61, 5syl5bir 242 . . . . . . 7 (𝐵 ∈ Fin → ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
76adantl 482 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
87expd 416 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
9 dfpss2 4020 . . . . . . . . 9 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
10 eqcom 2745 . . . . . . . . . . 11 (𝐵 = 𝐴𝐴 = 𝐵)
1110notbii 320 . . . . . . . . . 10 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵)
1211anbi2i 623 . . . . . . . . 9 ((𝐵𝐴 ∧ ¬ 𝐵 = 𝐴) ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
139, 12bitri 274 . . . . . . . 8 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
14 php3 8995 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
15 sdomnen 8769 . . . . . . . . . . 11 (𝐵𝐴 → ¬ 𝐵𝐴)
16 ensym 8789 . . . . . . . . . . 11 (𝐴𝐵𝐵𝐴)
1715, 16nsyl 140 . . . . . . . . . 10 (𝐵𝐴 → ¬ 𝐴𝐵)
1814, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
1918ex 413 . . . . . . . 8 (𝐴 ∈ Fin → (𝐵𝐴 → ¬ 𝐴𝐵))
2013, 19syl5bir 242 . . . . . . 7 (𝐴 ∈ Fin → ((𝐵𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
2120adantr 481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
2221expd 416 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
238, 22jaod 856 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵𝐵𝐴) → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
24233impia 1116 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵))
2524con4d 115 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))
26 eqeng 8774 . . 3 (𝐴 ∈ Fin → (𝐴 = 𝐵𝐴𝐵))
27263ad2ant1 1132 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴 = 𝐵𝐴𝐵))
2825, 27impbid 211 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wss 3887  wpss 3888   class class class wbr 5074  cen 8730  csdm 8732  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by:  fin23lem23  10082  fin1a2lem9  10164
  Copyright terms: Public domain W3C validator