MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem25 Structured version   Visualization version   GIF version

Theorem fin23lem25 9735
Description: Lemma for fin23 9800. In a chain of finite sets, equinumerosity is equivalent to equality. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
fin23lem25 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem fin23lem25
StepHypRef Expression
1 dfpss2 4013 . . . . . . . 8 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
2 php3 8687 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
3 sdomnen 8521 . . . . . . . . . 10 (𝐴𝐵 → ¬ 𝐴𝐵)
42, 3syl 17 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐴𝐵)
54ex 416 . . . . . . . 8 (𝐵 ∈ Fin → (𝐴𝐵 → ¬ 𝐴𝐵))
61, 5syl5bir 246 . . . . . . 7 (𝐵 ∈ Fin → ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
76adantl 485 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
87expd 419 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
9 dfpss2 4013 . . . . . . . . 9 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
10 eqcom 2805 . . . . . . . . . . 11 (𝐵 = 𝐴𝐴 = 𝐵)
1110notbii 323 . . . . . . . . . 10 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵)
1211anbi2i 625 . . . . . . . . 9 ((𝐵𝐴 ∧ ¬ 𝐵 = 𝐴) ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
139, 12bitri 278 . . . . . . . 8 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
14 php3 8687 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
15 sdomnen 8521 . . . . . . . . . . 11 (𝐵𝐴 → ¬ 𝐵𝐴)
16 ensym 8541 . . . . . . . . . . 11 (𝐴𝐵𝐵𝐴)
1715, 16nsyl 142 . . . . . . . . . 10 (𝐵𝐴 → ¬ 𝐴𝐵)
1814, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
1918ex 416 . . . . . . . 8 (𝐴 ∈ Fin → (𝐵𝐴 → ¬ 𝐴𝐵))
2013, 19syl5bir 246 . . . . . . 7 (𝐴 ∈ Fin → ((𝐵𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
2120adantr 484 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
2221expd 419 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
238, 22jaod 856 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵𝐵𝐴) → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
24233impia 1114 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵))
2524con4d 115 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))
26 eqeng 8526 . . 3 (𝐴 ∈ Fin → (𝐴 = 𝐵𝐴𝐵))
27263ad2ant1 1130 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴 = 𝐵𝐴𝐵))
2825, 27impbid 215 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wss 3881  wpss 3882   class class class wbr 5030  cen 8489  csdm 8491  Fincfn 8492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496
This theorem is referenced by:  fin23lem23  9737  fin1a2lem9  9819
  Copyright terms: Public domain W3C validator