Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdmqs Structured version   Visualization version   GIF version

Theorem disjdmqs 38805
Description: If a relation is disjoint, its domain quotient is equal to the domain quotient of the cosets by it. Lemma for partim2 38808 and petlem 38813 via disjdmqseq 38806. (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjdmqs ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 /𝑅))

Proof of Theorem disjdmqs
StepHypRef Expression
1 disjdmqsss 38803 . 2 ( Disj 𝑅 → (dom 𝑅 / 𝑅) ⊆ (dom ≀ 𝑅 /𝑅))
2 disjdmqscossss 38804 . 2 ( Disj 𝑅 → (dom ≀ 𝑅 /𝑅) ⊆ (dom 𝑅 / 𝑅))
31, 2eqssd 4001 1 ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 /𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  dom cdm 5685   / cqs 8744  ccoss 38182   Disj wdisjALTV 38216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rmo 3380  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747  df-qs 8751  df-coss 38412  df-cnvrefrel 38528  df-disjALTV 38706
This theorem is referenced by:  disjdmqseq  38806
  Copyright terms: Public domain W3C validator