| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdmqs | Structured version Visualization version GIF version | ||
| Description: If a relation is disjoint, its domain quotient is equal to the domain quotient of the cosets by it. Lemma for partim2 38915 and petlem 38920 via disjdmqseq 38913. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjdmqs | ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 / ≀ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdmqsss 38910 | . 2 ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) ⊆ (dom ≀ 𝑅 / ≀ 𝑅)) | |
| 2 | disjdmqscossss 38911 | . 2 ⊢ ( Disj 𝑅 → (dom ≀ 𝑅 / ≀ 𝑅) ⊆ (dom 𝑅 / 𝑅)) | |
| 3 | 1, 2 | eqssd 3949 | 1 ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 / ≀ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 dom cdm 5621 / cqs 8630 ≀ ccoss 38232 Disj wdisjALTV 38266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ral 3050 df-rex 3059 df-rmo 3348 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ec 8633 df-qs 8637 df-coss 38523 df-cnvrefrel 38629 df-disjALTV 38813 |
| This theorem is referenced by: disjdmqseq 38913 |
| Copyright terms: Public domain | W3C validator |