| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdmqs | Structured version Visualization version GIF version | ||
| Description: If a relation is disjoint, its domain quotient is equal to the domain quotient of the cosets by it. Lemma for partim2 38771 and petlem 38776 via disjdmqseq 38769. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjdmqs | ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 / ≀ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdmqsss 38766 | . 2 ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) ⊆ (dom ≀ 𝑅 / ≀ 𝑅)) | |
| 2 | disjdmqscossss 38767 | . 2 ⊢ ( Disj 𝑅 → (dom ≀ 𝑅 / ≀ 𝑅) ⊆ (dom 𝑅 / 𝑅)) | |
| 3 | 1, 2 | eqssd 3976 | 1 ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 / ≀ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5654 / cqs 8716 ≀ ccoss 38145 Disj wdisjALTV 38179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8719 df-qs 8723 df-coss 38375 df-cnvrefrel 38491 df-disjALTV 38669 |
| This theorem is referenced by: disjdmqseq 38769 |
| Copyright terms: Public domain | W3C validator |