| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partim2 | Structured version Visualization version GIF version | ||
| Description: Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim 38826. Lemma for petlem 38830. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| Ref | Expression |
|---|---|
| partim2 | ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjim 38799 | . . 3 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → EqvRel ≀ 𝑅) |
| 3 | disjdmqseq 38823 | . . 3 ⊢ ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
| 4 | 3 | biimpa 476 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) |
| 5 | 2, 4 | jca 511 | 1 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 dom cdm 5654 / cqs 8718 ≀ ccoss 38199 EqvRel weqvrel 38216 Disj wdisjALTV 38233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8721 df-qs 8725 df-coss 38429 df-refrel 38530 df-cnvrefrel 38545 df-symrel 38562 df-trrel 38592 df-eqvrel 38603 df-disjALTV 38723 |
| This theorem is referenced by: partim 38826 petlem 38830 |
| Copyright terms: Public domain | W3C validator |