| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partim2 | Structured version Visualization version GIF version | ||
| Description: Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim 38854. Lemma for petlem 38858. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| Ref | Expression |
|---|---|
| partim2 | ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjim 38827 | . . 3 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → EqvRel ≀ 𝑅) |
| 3 | disjdmqseq 38851 | . . 3 ⊢ ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
| 4 | 3 | biimpa 476 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) |
| 5 | 2, 4 | jca 511 | 1 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 dom cdm 5614 / cqs 8621 ≀ ccoss 38223 EqvRel weqvrel 38240 Disj wdisjALTV 38257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-qs 8628 df-coss 38456 df-refrel 38557 df-cnvrefrel 38572 df-symrel 38589 df-trrel 38619 df-eqvrel 38630 df-disjALTV 38751 |
| This theorem is referenced by: partim 38854 petlem 38858 |
| Copyright terms: Public domain | W3C validator |