| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partim2 | Structured version Visualization version GIF version | ||
| Description: Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim 38786. Lemma for petlem 38790. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| Ref | Expression |
|---|---|
| partim2 | ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjim 38759 | . . 3 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → EqvRel ≀ 𝑅) |
| 3 | disjdmqseq 38783 | . . 3 ⊢ ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
| 4 | 3 | biimpa 476 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) |
| 5 | 2, 4 | jca 511 | 1 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 dom cdm 5619 / cqs 8624 ≀ ccoss 38155 EqvRel weqvrel 38172 Disj wdisjALTV 38189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3343 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8627 df-qs 8631 df-coss 38388 df-refrel 38489 df-cnvrefrel 38504 df-symrel 38521 df-trrel 38551 df-eqvrel 38562 df-disjALTV 38683 |
| This theorem is referenced by: partim 38786 petlem 38790 |
| Copyright terms: Public domain | W3C validator |