Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partim2 Structured version   Visualization version   GIF version

Theorem partim2 38825
Description: Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim 38826. Lemma for petlem 38830. (Contributed by Peter Mazsa, 17-Sep-2021.)
Assertion
Ref Expression
partim2 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))

Proof of Theorem partim2
StepHypRef Expression
1 disjim 38799 . . 3 ( Disj 𝑅 → EqvRel ≀ 𝑅)
21adantr 480 . 2 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → EqvRel ≀ 𝑅)
3 disjdmqseq 38823 . . 3 ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 /𝑅) = 𝐴))
43biimpa 476 . 2 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (dom ≀ 𝑅 /𝑅) = 𝐴)
52, 4jca 511 1 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  dom cdm 5654   / cqs 8718  ccoss 38199   EqvRel weqvrel 38216   Disj wdisjALTV 38233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rmo 3359  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8721  df-qs 8725  df-coss 38429  df-refrel 38530  df-cnvrefrel 38545  df-symrel 38562  df-trrel 38592  df-eqvrel 38603  df-disjALTV 38723
This theorem is referenced by:  partim  38826  petlem  38830
  Copyright terms: Public domain W3C validator