Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partim2 Structured version   Visualization version   GIF version

Theorem partim2 38799
Description: Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim 38800. Lemma for petlem 38804. (Contributed by Peter Mazsa, 17-Sep-2021.)
Assertion
Ref Expression
partim2 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))

Proof of Theorem partim2
StepHypRef Expression
1 disjim 38773 . . 3 ( Disj 𝑅 → EqvRel ≀ 𝑅)
21adantr 480 . 2 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → EqvRel ≀ 𝑅)
3 disjdmqseq 38797 . . 3 ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 /𝑅) = 𝐴))
43biimpa 476 . 2 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (dom ≀ 𝑅 /𝑅) = 𝐴)
52, 4jca 511 1 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  dom cdm 5638   / cqs 8670  ccoss 38169   EqvRel weqvrel 38186   Disj wdisjALTV 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-qs 8677  df-coss 38402  df-refrel 38503  df-cnvrefrel 38518  df-symrel 38535  df-trrel 38565  df-eqvrel 38576  df-disjALTV 38697
This theorem is referenced by:  partim  38800  petlem  38804
  Copyright terms: Public domain W3C validator