| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > petlem | Structured version Visualization version GIF version | ||
| Description: If you can prove that the equivalence of cosets on their natural domain implies disjointness (e.g. eqvrelqseqdisj5 38830), or converse function (cf. dfdisjALTV 38710), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. Lemma for the Partition Equivalence Theorem pet2 38847. (Contributed by Peter Mazsa, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| petlem.1 | ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → Disj 𝑅) |
| Ref | Expression |
|---|---|
| petlem | ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | partim2 38804 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
| 2 | petlem.1 | . . 3 ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → Disj 𝑅) | |
| 3 | simpr 484 | . . 3 ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) | |
| 4 | disjdmqseq 38802 | . . . 4 ⊢ ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
| 5 | 4 | pm5.32i 574 | . . 3 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| 6 | 2, 3, 5 | sylanbrc 583 | . 2 ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
| 7 | 1, 6 | impbii 209 | 1 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5623 / cqs 8631 ≀ ccoss 38174 EqvRel weqvrel 38191 Disj wdisjALTV 38208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 df-coss 38407 df-refrel 38508 df-cnvrefrel 38523 df-symrel 38540 df-trrel 38570 df-eqvrel 38581 df-disjALTV 38702 |
| This theorem is referenced by: petlemi 38810 mpet3 38833 cpet2 38834 petincnvepres2 38845 pet2 38847 |
| Copyright terms: Public domain | W3C validator |