Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petlem Structured version   Visualization version   GIF version

Theorem petlem 38813
Description: If you can prove that the equivalence of cosets on their natural domain implies disjointness (e.g. eqvrelqseqdisj5 38834), or converse function (cf. dfdisjALTV 38714), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. Lemma for the Partition Equivalence Theorem pet2 38851. (Contributed by Peter Mazsa, 18-Sep-2021.)
Hypothesis
Ref Expression
petlem.1 (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴) → Disj 𝑅)
Assertion
Ref Expression
petlem (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))

Proof of Theorem petlem
StepHypRef Expression
1 partim2 38808 . 2 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
2 petlem.1 . . 3 (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴) → Disj 𝑅)
3 simpr 484 . . 3 (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴) → (dom ≀ 𝑅 /𝑅) = 𝐴)
4 disjdmqseq 38806 . . . 4 ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 /𝑅) = 𝐴))
54pm5.32i 574 . . 3 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
62, 3, 5sylanbrc 583 . 2 (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴) → ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
71, 6impbii 209 1 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  dom cdm 5685   / cqs 8744  ccoss 38182   EqvRel weqvrel 38199   Disj wdisjALTV 38216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rmo 3380  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747  df-qs 8751  df-coss 38412  df-refrel 38513  df-cnvrefrel 38528  df-symrel 38545  df-trrel 38575  df-eqvrel 38586  df-disjALTV 38706
This theorem is referenced by:  petlemi  38814  mpet3  38837  cpet2  38838  petincnvepres2  38849  pet2  38851
  Copyright terms: Public domain W3C validator