![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > petlem | Structured version Visualization version GIF version |
Description: If you can prove that the equivalence of cosets on their natural domain implies disjointness (e.g. eqvrelqseqdisj5 38815), or converse function (cf. dfdisjALTV 38695), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. Lemma for the Partition Equivalence Theorem pet2 38832. (Contributed by Peter Mazsa, 18-Sep-2021.) |
Ref | Expression |
---|---|
petlem.1 | ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → Disj 𝑅) |
Ref | Expression |
---|---|
petlem | ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | partim2 38789 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
2 | petlem.1 | . . 3 ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → Disj 𝑅) | |
3 | simpr 484 | . . 3 ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) | |
4 | disjdmqseq 38787 | . . . 4 ⊢ ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
5 | 4 | pm5.32i 574 | . . 3 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
6 | 2, 3, 5 | sylanbrc 583 | . 2 ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) |
7 | 1, 6 | impbii 209 | 1 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 dom cdm 5689 / cqs 8743 ≀ ccoss 38162 EqvRel weqvrel 38179 Disj wdisjALTV 38196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rmo 3378 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 df-qs 8750 df-coss 38393 df-refrel 38494 df-cnvrefrel 38509 df-symrel 38526 df-trrel 38556 df-eqvrel 38567 df-disjALTV 38687 |
This theorem is referenced by: petlemi 38795 mpet3 38818 cpet2 38819 petincnvepres2 38830 pet2 38832 |
Copyright terms: Public domain | W3C validator |