Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petlem Structured version   Visualization version   GIF version

Theorem petlem 37026
Description: If you can prove that the equivalence of cosets on their natural domain implies disjointness (e.g. eqvrelqseqdisj5 37047), or converse function (cf. dfdisjALTV 36927), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. Lemma for the Partition Equivalence Theorem pet2 37064. (Contributed by Peter Mazsa, 18-Sep-2021.)
Hypothesis
Ref Expression
petlem.1 (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴) → Disj 𝑅)
Assertion
Ref Expression
petlem (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))

Proof of Theorem petlem
StepHypRef Expression
1 partim2 37021 . 2 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
2 petlem.1 . . 3 (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴) → Disj 𝑅)
3 simpr 486 . . 3 (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴) → (dom ≀ 𝑅 /𝑅) = 𝐴)
4 disjdmqseq 37019 . . . 4 ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 /𝑅) = 𝐴))
54pm5.32i 576 . . 3 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
62, 3, 5sylanbrc 584 . 2 (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴) → ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
71, 6impbii 208 1 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  dom cdm 5600   / cqs 8528  ccoss 36381   EqvRel weqvrel 36398   Disj wdisjALTV 36415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rmo 3331  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-qs 8535  df-coss 36625  df-refrel 36726  df-cnvrefrel 36741  df-symrel 36758  df-trrel 36788  df-eqvrel 36799  df-disjALTV 36919
This theorem is referenced by:  petlemi  37027  mpet3  37050  cpet2  37051  petincnvepres2  37062  pet2  37064
  Copyright terms: Public domain W3C validator