Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdmqseq Structured version   Visualization version   GIF version

Theorem disjdmqseq 38782
Description: If a relation is disjoint, its domain quotient is equal to a class if and only if the domain quotient of the cosets by it is equal to the class. General version of eldisjn0el 38783 (which is the closest theorem to the former prter2 38859). Lemma for partim2 38784 and petlem 38789. (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjdmqseq ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 /𝑅) = 𝐴))

Proof of Theorem disjdmqseq
StepHypRef Expression
1 disjdmqs 38781 . 2 ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 /𝑅))
21eqeq1d 2731 1 ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 /𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  dom cdm 5623   / cqs 8631  ccoss 38154   Disj wdisjALTV 38188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3345  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ec 8634  df-qs 8638  df-coss 38387  df-cnvrefrel 38503  df-disjALTV 38682
This theorem is referenced by:  eldisjn0el  38783  partim2  38784  petlem  38789
  Copyright terms: Public domain W3C validator