Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdmqseq Structured version   Visualization version   GIF version

Theorem disjdmqseq 38976
Description: If a relation is disjoint, its domain quotient is equal to a class if and only if the domain quotient of the cosets by it is equal to the class. General version of eldisjn0el 38977 (which is the closest theorem to the former prter2 39053). Lemma for partim2 38978 and petlem 38983. (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjdmqseq ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 /𝑅) = 𝐴))

Proof of Theorem disjdmqseq
StepHypRef Expression
1 disjdmqs 38975 . 2 ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 /𝑅))
21eqeq1d 2735 1 ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 /𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  dom cdm 5621   / cqs 8630  ccoss 38295   Disj wdisjALTV 38329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rmo 3347  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633  df-qs 8637  df-coss 38586  df-cnvrefrel 38692  df-disjALTV 38876
This theorem is referenced by:  eldisjn0el  38977  partim2  38978  petlem  38983
  Copyright terms: Public domain W3C validator