| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrel1cossxrnidres | Structured version Visualization version GIF version | ||
| Description: The cosets by a range Cartesian product with a restricted identity relation are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqvrel1cossxrnidres | ⊢ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjALTVxrnidres 38700 | . 2 ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) | |
| 2 | 1 | disjimi 38724 | 1 ⊢ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: I cid 5559 ↾ cres 5669 ⋉ cxrn 38122 ≀ ccoss 38123 EqvRel weqvrel 38140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7997 df-2nd 7998 df-ec 8730 df-xrn 38313 df-coss 38353 df-refrel 38454 df-cnvrefrel 38469 df-symrel 38486 df-trrel 38516 df-eqvrel 38527 df-funALTV 38624 df-disjALTV 38647 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |