Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrel1cossxrnidres Structured version   Visualization version   GIF version

Theorem eqvrel1cossxrnidres 38777
Description: The cosets by a range Cartesian product with a restricted identity relation are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
eqvrel1cossxrnidres EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴))

Proof of Theorem eqvrel1cossxrnidres
StepHypRef Expression
1 disjALTVxrnidres 38743 . 2 Disj (𝑅 ⋉ ( I ↾ 𝐴))
21disjimi 38767 1 EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:   I cid 5540  cres 5648  cxrn 38165  ccoss 38166   EqvRel weqvrel 38183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fo 6525  df-fv 6527  df-1st 7977  df-2nd 7978  df-ec 8684  df-xrn 38356  df-coss 38396  df-refrel 38497  df-cnvrefrel 38512  df-symrel 38529  df-trrel 38559  df-eqvrel 38570  df-funALTV 38667  df-disjALTV 38690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator