Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probun Structured version   Visualization version   GIF version

Theorem probun 31679
Description: The probability of the union two incompatible events is the sum of their probabilities. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
probun ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))

Proof of Theorem probun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1208 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
2 simplr 767 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → 𝐴 = 𝐵)
3 simpr 487 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
4 disj3 4384 . . . . . . . . . . 11 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
54biimpi 218 . . . . . . . . . 10 ((𝐴𝐵) = ∅ → 𝐴 = (𝐴𝐵))
6 difeq1 4075 . . . . . . . . . . 11 (𝐴 = 𝐵 → (𝐴𝐵) = (𝐵𝐵))
7 difid 4311 . . . . . . . . . . 11 (𝐵𝐵) = ∅
86, 7syl6eq 2871 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐵) = ∅)
95, 8sylan9eqr 2877 . . . . . . . . 9 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → 𝐴 = ∅)
10 eqtr2 2841 . . . . . . . . . 10 ((𝐴 = 𝐵𝐴 = ∅) → 𝐵 = ∅)
119, 10syldan 593 . . . . . . . . 9 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → 𝐵 = ∅)
129, 11uneq12d 4123 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = (∅ ∪ ∅))
13 unidm 4111 . . . . . . . 8 (∅ ∪ ∅) = ∅
1412, 13syl6eq 2871 . . . . . . 7 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
1514fveq2d 6655 . . . . . 6 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = (𝑃‘∅))
16 probnul 31674 . . . . . 6 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
1715, 16sylan9eqr 2877 . . . . 5 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃‘(𝐴𝐵)) = 0)
189fveq2d 6655 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) = (𝑃‘∅))
1918, 16sylan9eqr 2877 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃𝐴) = 0)
2011fveq2d 6655 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) = (𝑃‘∅))
2120, 16sylan9eqr 2877 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃𝐵) = 0)
2219, 21oveq12d 7155 . . . . . 6 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → ((𝑃𝐴) + (𝑃𝐵)) = (0 + 0))
23 00id 10796 . . . . . 6 (0 + 0) = 0
2422, 23syl6eq 2871 . . . . 5 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → ((𝑃𝐴) + (𝑃𝐵)) = 0)
2517, 24eqtr4d 2858 . . . 4 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
261, 2, 3, 25syl12anc 834 . . 3 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
2726ex 415 . 2 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
28 3anass 1091 . . . . . . 7 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ↔ (𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)))
2928anbi1i 625 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)) ∧ 𝐴𝐵))
30 df-3an 1085 . . . . . 6 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)) ∧ 𝐴𝐵))
3129, 30bitr4i 280 . . . . 5 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ (𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵))
32 simpl1 1187 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
33 prssi 4735 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} ⊆ dom 𝑃)
34333ad2ant2 1130 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ dom 𝑃)
3534adantr 483 . . . . . . . 8 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ⊆ dom 𝑃)
36 prex 5314 . . . . . . . . 9 {𝐴, 𝐵} ∈ V
3736elpw 4524 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝒫 dom 𝑃 ↔ {𝐴, 𝐵} ⊆ dom 𝑃)
3835, 37sylibr 236 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ∈ 𝒫 dom 𝑃)
39 prct 30431 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} ≼ ω)
40393ad2ant2 1130 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≼ ω)
4140adantr 483 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ≼ ω)
42 simp2l 1195 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐴 ∈ dom 𝑃)
43 simp2r 1196 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐵 ∈ dom 𝑃)
44 simp3 1134 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐴𝐵)
45 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
46 id 22 . . . . . . . . . 10 (𝑥 = 𝐵𝑥 = 𝐵)
4745, 46disjprg 5043 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
4842, 43, 44, 47syl3anc 1367 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
4948biimpar 480 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
50 probcun 31678 . . . . . . 7 ((𝑃 ∈ Prob ∧ {𝐴, 𝐵} ∈ 𝒫 dom 𝑃 ∧ ({𝐴, 𝐵} ≼ ω ∧ Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)) → (𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥))
5132, 38, 41, 49, 50syl112anc 1370 . . . . . 6 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥))
52 uniprg 4837 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} = (𝐴𝐵))
5352fveq2d 6655 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (𝑃 {𝐴, 𝐵}) = (𝑃‘(𝐴𝐵)))
54533ad2ant2 1130 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃 {𝐴, 𝐵}) = (𝑃‘(𝐴𝐵)))
55 fveq2 6651 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑃𝑥) = (𝑃𝐴))
5655adantl 484 . . . . . . . . 9 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ 𝑥 = 𝐴) → (𝑃𝑥) = (𝑃𝐴))
57 fveq2 6651 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑃𝑥) = (𝑃𝐵))
5857adantl 484 . . . . . . . . 9 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ 𝑥 = 𝐵) → (𝑃𝑥) = (𝑃𝐵))
59 unitssxrge0 31145 . . . . . . . . . 10 (0[,]1) ⊆ (0[,]+∞)
60 simp1 1132 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝑃 ∈ Prob)
61 prob01 31673 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃𝐴) ∈ (0[,]1))
6260, 42, 61syl2anc 586 . . . . . . . . . 10 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐴) ∈ (0[,]1))
6359, 62sseldi 3948 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐴) ∈ (0[,]+∞))
64 prob01 31673 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) → (𝑃𝐵) ∈ (0[,]1))
6560, 43, 64syl2anc 586 . . . . . . . . . 10 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐵) ∈ (0[,]1))
6659, 65sseldi 3948 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐵) ∈ (0[,]+∞))
6756, 58, 42, 43, 63, 66, 44esumpr 31327 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
6854, 67eqeq12d 2836 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → ((𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) ↔ (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵))))
6968adantr 483 . . . . . 6 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → ((𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) ↔ (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵))))
7051, 69mpbid 234 . . . . 5 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
7131, 70sylanb 583 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
72 unitssre 12869 . . . . . 6 (0[,]1) ⊆ ℝ
73 simpll1 1208 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
74 simpll2 1209 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ dom 𝑃)
7573, 74, 61syl2anc 586 . . . . . 6 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) ∈ (0[,]1))
7672, 75sseldi 3948 . . . . 5 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) ∈ ℝ)
77 simpll3 1210 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ dom 𝑃)
7873, 77, 64syl2anc 586 . . . . . 6 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) ∈ (0[,]1))
7972, 78sseldi 3948 . . . . 5 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) ∈ ℝ)
80 rexadd 12607 . . . . 5 (((𝑃𝐴) ∈ ℝ ∧ (𝑃𝐵) ∈ ℝ) → ((𝑃𝐴) +𝑒 (𝑃𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8176, 79, 80syl2anc 586 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → ((𝑃𝐴) +𝑒 (𝑃𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8271, 81eqtrd 2855 . . 3 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8382ex 415 . 2 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
8427, 83pm2.61dane 3099 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3011  cdif 3916  cun 3917  cin 3918  wss 3919  c0 4274  𝒫 cpw 4520  {cpr 4550   cuni 4819  Disj wdisj 5012   class class class wbr 5047  dom cdm 5536  cfv 6336  (class class class)co 7137  ωcom 7561  cdom 8488  cr 10517  0cc0 10518  1c1 10519   + caddc 10521  +∞cpnf 10653   +𝑒 cxad 12487  [,]cicc 12723  Σ*cesum 31288  Probcprb 31667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-inf2 9085  ax-ac2 9866  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595  ax-pre-sup 10596  ax-addf 10597  ax-mulf 10598
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-disj 5013  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-of 7390  df-om 7562  df-1st 7670  df-2nd 7671  df-supp 7812  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-1o 8083  df-2o 8084  df-oadd 8087  df-er 8270  df-map 8389  df-pm 8390  df-ixp 8443  df-en 8491  df-dom 8492  df-sdom 8493  df-fin 8494  df-fsupp 8815  df-fi 8856  df-sup 8887  df-inf 8888  df-oi 8955  df-dju 9311  df-card 9349  df-acn 9352  df-ac 9523  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-div 11279  df-nn 11620  df-2 11682  df-3 11683  df-4 11684  df-5 11685  df-6 11686  df-7 11687  df-8 11688  df-9 11689  df-n0 11880  df-z 11964  df-dec 12081  df-uz 12226  df-q 12331  df-rp 12372  df-xneg 12489  df-xadd 12490  df-xmul 12491  df-ioo 12724  df-ioc 12725  df-ico 12726  df-icc 12727  df-fz 12878  df-fzo 13019  df-fl 13147  df-mod 13223  df-seq 13355  df-exp 13415  df-fac 13619  df-bc 13648  df-hash 13676  df-shft 14406  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-limsup 14808  df-clim 14825  df-rlim 14826  df-sum 15023  df-ef 15401  df-sin 15403  df-cos 15404  df-pi 15406  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-rest 16674  df-topn 16675  df-0g 16693  df-gsum 16694  df-topgen 16695  df-pt 16696  df-prds 16699  df-ordt 16752  df-xrs 16753  df-qtop 16758  df-imas 16759  df-xps 16761  df-mre 16835  df-mrc 16836  df-acs 16838  df-ps 17788  df-tsr 17789  df-plusf 17829  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-mhm 17934  df-submnd 17935  df-grp 18084  df-minusg 18085  df-sbg 18086  df-mulg 18203  df-subg 18254  df-cntz 18425  df-cmn 18886  df-abl 18887  df-mgp 19218  df-ur 19230  df-ring 19277  df-cring 19278  df-subrg 19511  df-abv 19566  df-lmod 19614  df-scaf 19615  df-sra 19922  df-rgmod 19923  df-psmet 20515  df-xmet 20516  df-met 20517  df-bl 20518  df-mopn 20519  df-fbas 20520  df-fg 20521  df-cnfld 20524  df-top 21480  df-topon 21497  df-topsp 21519  df-bases 21532  df-cld 21605  df-ntr 21606  df-cls 21607  df-nei 21684  df-lp 21722  df-perf 21723  df-cn 21813  df-cnp 21814  df-haus 21901  df-tx 22148  df-hmeo 22341  df-fil 22432  df-fm 22524  df-flim 22525  df-flf 22526  df-tmd 22658  df-tgp 22659  df-tsms 22713  df-trg 22746  df-xms 22908  df-ms 22909  df-tms 22910  df-nm 23170  df-ngp 23171  df-nrg 23173  df-nlm 23174  df-ii 23463  df-cncf 23464  df-limc 24444  df-dv 24445  df-log 25121  df-esum 31289  df-siga 31370  df-meas 31457  df-prob 31668
This theorem is referenced by:  probdif  31680
  Copyright terms: Public domain W3C validator