Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probun Structured version   Visualization version   GIF version

Theorem probun 34416
Description: The probability of the union two incompatible events is the sum of their probabilities. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
probun ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))

Proof of Theorem probun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1213 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
2 simplr 768 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → 𝐴 = 𝐵)
3 simpr 484 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
4 disj3 4419 . . . . . . . . . . 11 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
54biimpi 216 . . . . . . . . . 10 ((𝐴𝐵) = ∅ → 𝐴 = (𝐴𝐵))
6 difeq1 4084 . . . . . . . . . . 11 (𝐴 = 𝐵 → (𝐴𝐵) = (𝐵𝐵))
7 difid 4341 . . . . . . . . . . 11 (𝐵𝐵) = ∅
86, 7eqtrdi 2781 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐵) = ∅)
95, 8sylan9eqr 2787 . . . . . . . . 9 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → 𝐴 = ∅)
10 eqtr2 2751 . . . . . . . . . 10 ((𝐴 = 𝐵𝐴 = ∅) → 𝐵 = ∅)
119, 10syldan 591 . . . . . . . . 9 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → 𝐵 = ∅)
129, 11uneq12d 4134 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = (∅ ∪ ∅))
13 unidm 4122 . . . . . . . 8 (∅ ∪ ∅) = ∅
1412, 13eqtrdi 2781 . . . . . . 7 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
1514fveq2d 6864 . . . . . 6 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = (𝑃‘∅))
16 probnul 34411 . . . . . 6 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
1715, 16sylan9eqr 2787 . . . . 5 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃‘(𝐴𝐵)) = 0)
189fveq2d 6864 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) = (𝑃‘∅))
1918, 16sylan9eqr 2787 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃𝐴) = 0)
2011fveq2d 6864 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) = (𝑃‘∅))
2120, 16sylan9eqr 2787 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃𝐵) = 0)
2219, 21oveq12d 7407 . . . . . 6 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → ((𝑃𝐴) + (𝑃𝐵)) = (0 + 0))
23 00id 11355 . . . . . 6 (0 + 0) = 0
2422, 23eqtrdi 2781 . . . . 5 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → ((𝑃𝐴) + (𝑃𝐵)) = 0)
2517, 24eqtr4d 2768 . . . 4 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
261, 2, 3, 25syl12anc 836 . . 3 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
2726ex 412 . 2 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
28 3anass 1094 . . . . . . 7 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ↔ (𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)))
2928anbi1i 624 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)) ∧ 𝐴𝐵))
30 df-3an 1088 . . . . . 6 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)) ∧ 𝐴𝐵))
3129, 30bitr4i 278 . . . . 5 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ (𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵))
32 simpl1 1192 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
33 prssi 4787 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} ⊆ dom 𝑃)
34333ad2ant2 1134 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ dom 𝑃)
3534adantr 480 . . . . . . . 8 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ⊆ dom 𝑃)
36 prex 5394 . . . . . . . . 9 {𝐴, 𝐵} ∈ V
3736elpw 4569 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝒫 dom 𝑃 ↔ {𝐴, 𝐵} ⊆ dom 𝑃)
3835, 37sylibr 234 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ∈ 𝒫 dom 𝑃)
39 prct 32644 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} ≼ ω)
40393ad2ant2 1134 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≼ ω)
4140adantr 480 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ≼ ω)
42 simp2l 1200 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐴 ∈ dom 𝑃)
43 simp2r 1201 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐵 ∈ dom 𝑃)
44 simp3 1138 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐴𝐵)
45 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
46 id 22 . . . . . . . . . 10 (𝑥 = 𝐵𝑥 = 𝐵)
4745, 46disjprg 5105 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
4842, 43, 44, 47syl3anc 1373 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
4948biimpar 477 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
50 probcun 34415 . . . . . . 7 ((𝑃 ∈ Prob ∧ {𝐴, 𝐵} ∈ 𝒫 dom 𝑃 ∧ ({𝐴, 𝐵} ≼ ω ∧ Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)) → (𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥))
5132, 38, 41, 49, 50syl112anc 1376 . . . . . 6 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥))
52 uniprg 4889 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} = (𝐴𝐵))
5352fveq2d 6864 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (𝑃 {𝐴, 𝐵}) = (𝑃‘(𝐴𝐵)))
54533ad2ant2 1134 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃 {𝐴, 𝐵}) = (𝑃‘(𝐴𝐵)))
55 fveq2 6860 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑃𝑥) = (𝑃𝐴))
5655adantl 481 . . . . . . . . 9 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ 𝑥 = 𝐴) → (𝑃𝑥) = (𝑃𝐴))
57 fveq2 6860 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑃𝑥) = (𝑃𝐵))
5857adantl 481 . . . . . . . . 9 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ 𝑥 = 𝐵) → (𝑃𝑥) = (𝑃𝐵))
59 unitssxrge0 33896 . . . . . . . . . 10 (0[,]1) ⊆ (0[,]+∞)
60 simp1 1136 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝑃 ∈ Prob)
61 prob01 34410 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃𝐴) ∈ (0[,]1))
6260, 42, 61syl2anc 584 . . . . . . . . . 10 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐴) ∈ (0[,]1))
6359, 62sselid 3946 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐴) ∈ (0[,]+∞))
64 prob01 34410 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) → (𝑃𝐵) ∈ (0[,]1))
6560, 43, 64syl2anc 584 . . . . . . . . . 10 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐵) ∈ (0[,]1))
6659, 65sselid 3946 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐵) ∈ (0[,]+∞))
6756, 58, 42, 43, 63, 66, 44esumpr 34062 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
6854, 67eqeq12d 2746 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → ((𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) ↔ (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵))))
6968adantr 480 . . . . . 6 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → ((𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) ↔ (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵))))
7051, 69mpbid 232 . . . . 5 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
7131, 70sylanb 581 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
72 unitssre 13466 . . . . . 6 (0[,]1) ⊆ ℝ
73 simpll1 1213 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
74 simpll2 1214 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ dom 𝑃)
7573, 74, 61syl2anc 584 . . . . . 6 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) ∈ (0[,]1))
7672, 75sselid 3946 . . . . 5 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) ∈ ℝ)
77 simpll3 1215 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ dom 𝑃)
7873, 77, 64syl2anc 584 . . . . . 6 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) ∈ (0[,]1))
7972, 78sselid 3946 . . . . 5 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) ∈ ℝ)
80 rexadd 13198 . . . . 5 (((𝑃𝐴) ∈ ℝ ∧ (𝑃𝐵) ∈ ℝ) → ((𝑃𝐴) +𝑒 (𝑃𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8176, 79, 80syl2anc 584 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → ((𝑃𝐴) +𝑒 (𝑃𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8271, 81eqtrd 2765 . . 3 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8382ex 412 . 2 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
8427, 83pm2.61dane 3013 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3913  cun 3914  cin 3915  wss 3916  c0 4298  𝒫 cpw 4565  {cpr 4593   cuni 4873  Disj wdisj 5076   class class class wbr 5109  dom cdm 5640  cfv 6513  (class class class)co 7389  ωcom 7844  cdom 8918  cr 11073  0cc0 11074  1c1 11075   + caddc 11077  +∞cpnf 11211   +𝑒 cxad 13076  [,]cicc 13315  Σ*cesum 34023  Probcprb 34404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-ac2 10422  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-disj 5077  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-dju 9860  df-card 9898  df-acn 9901  df-ac 10075  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-ioc 13317  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-fac 14245  df-bc 14274  df-hash 14302  df-shft 15039  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-limsup 15443  df-clim 15460  df-rlim 15461  df-sum 15659  df-ef 16039  df-sin 16041  df-cos 16042  df-pi 16044  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-ordt 17470  df-xrs 17471  df-qtop 17476  df-imas 17477  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-ps 18531  df-tsr 18532  df-plusf 18572  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-subrng 20461  df-subrg 20485  df-abv 20724  df-lmod 20774  df-scaf 20775  df-sra 21086  df-rgmod 21087  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-tmd 23965  df-tgp 23966  df-tsms 24020  df-trg 24053  df-xms 24214  df-ms 24215  df-tms 24216  df-nm 24476  df-ngp 24477  df-nrg 24479  df-nlm 24480  df-ii 24776  df-cncf 24777  df-limc 25773  df-dv 25774  df-log 26471  df-esum 34024  df-siga 34105  df-meas 34192  df-prob 34405
This theorem is referenced by:  probdif  34417
  Copyright terms: Public domain W3C validator