Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probun Structured version   Visualization version   GIF version

Theorem probun 34126
Description: The probability of the union two incompatible events is the sum of their probabilities. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
probun ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))

Proof of Theorem probun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1209 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
2 simplr 767 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → 𝐴 = 𝐵)
3 simpr 483 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
4 disj3 4454 . . . . . . . . . . 11 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
54biimpi 215 . . . . . . . . . 10 ((𝐴𝐵) = ∅ → 𝐴 = (𝐴𝐵))
6 difeq1 4112 . . . . . . . . . . 11 (𝐴 = 𝐵 → (𝐴𝐵) = (𝐵𝐵))
7 difid 4371 . . . . . . . . . . 11 (𝐵𝐵) = ∅
86, 7eqtrdi 2781 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐵) = ∅)
95, 8sylan9eqr 2787 . . . . . . . . 9 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → 𝐴 = ∅)
10 eqtr2 2749 . . . . . . . . . 10 ((𝐴 = 𝐵𝐴 = ∅) → 𝐵 = ∅)
119, 10syldan 589 . . . . . . . . 9 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → 𝐵 = ∅)
129, 11uneq12d 4162 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = (∅ ∪ ∅))
13 unidm 4150 . . . . . . . 8 (∅ ∪ ∅) = ∅
1412, 13eqtrdi 2781 . . . . . . 7 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
1514fveq2d 6898 . . . . . 6 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = (𝑃‘∅))
16 probnul 34121 . . . . . 6 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
1715, 16sylan9eqr 2787 . . . . 5 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃‘(𝐴𝐵)) = 0)
189fveq2d 6898 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) = (𝑃‘∅))
1918, 16sylan9eqr 2787 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃𝐴) = 0)
2011fveq2d 6898 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) = (𝑃‘∅))
2120, 16sylan9eqr 2787 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃𝐵) = 0)
2219, 21oveq12d 7435 . . . . . 6 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → ((𝑃𝐴) + (𝑃𝐵)) = (0 + 0))
23 00id 11419 . . . . . 6 (0 + 0) = 0
2422, 23eqtrdi 2781 . . . . 5 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → ((𝑃𝐴) + (𝑃𝐵)) = 0)
2517, 24eqtr4d 2768 . . . 4 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
261, 2, 3, 25syl12anc 835 . . 3 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
2726ex 411 . 2 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
28 3anass 1092 . . . . . . 7 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ↔ (𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)))
2928anbi1i 622 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)) ∧ 𝐴𝐵))
30 df-3an 1086 . . . . . 6 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)) ∧ 𝐴𝐵))
3129, 30bitr4i 277 . . . . 5 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ (𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵))
32 simpl1 1188 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
33 prssi 4825 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} ⊆ dom 𝑃)
34333ad2ant2 1131 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ dom 𝑃)
3534adantr 479 . . . . . . . 8 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ⊆ dom 𝑃)
36 prex 5433 . . . . . . . . 9 {𝐴, 𝐵} ∈ V
3736elpw 4607 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝒫 dom 𝑃 ↔ {𝐴, 𝐵} ⊆ dom 𝑃)
3835, 37sylibr 233 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ∈ 𝒫 dom 𝑃)
39 prct 32557 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} ≼ ω)
40393ad2ant2 1131 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≼ ω)
4140adantr 479 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ≼ ω)
42 simp2l 1196 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐴 ∈ dom 𝑃)
43 simp2r 1197 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐵 ∈ dom 𝑃)
44 simp3 1135 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐴𝐵)
45 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
46 id 22 . . . . . . . . . 10 (𝑥 = 𝐵𝑥 = 𝐵)
4745, 46disjprg 5144 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
4842, 43, 44, 47syl3anc 1368 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
4948biimpar 476 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
50 probcun 34125 . . . . . . 7 ((𝑃 ∈ Prob ∧ {𝐴, 𝐵} ∈ 𝒫 dom 𝑃 ∧ ({𝐴, 𝐵} ≼ ω ∧ Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)) → (𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥))
5132, 38, 41, 49, 50syl112anc 1371 . . . . . 6 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥))
52 uniprg 4924 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} = (𝐴𝐵))
5352fveq2d 6898 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (𝑃 {𝐴, 𝐵}) = (𝑃‘(𝐴𝐵)))
54533ad2ant2 1131 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃 {𝐴, 𝐵}) = (𝑃‘(𝐴𝐵)))
55 fveq2 6894 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑃𝑥) = (𝑃𝐴))
5655adantl 480 . . . . . . . . 9 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ 𝑥 = 𝐴) → (𝑃𝑥) = (𝑃𝐴))
57 fveq2 6894 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑃𝑥) = (𝑃𝐵))
5857adantl 480 . . . . . . . . 9 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ 𝑥 = 𝐵) → (𝑃𝑥) = (𝑃𝐵))
59 unitssxrge0 33588 . . . . . . . . . 10 (0[,]1) ⊆ (0[,]+∞)
60 simp1 1133 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝑃 ∈ Prob)
61 prob01 34120 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃𝐴) ∈ (0[,]1))
6260, 42, 61syl2anc 582 . . . . . . . . . 10 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐴) ∈ (0[,]1))
6359, 62sselid 3975 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐴) ∈ (0[,]+∞))
64 prob01 34120 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) → (𝑃𝐵) ∈ (0[,]1))
6560, 43, 64syl2anc 582 . . . . . . . . . 10 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐵) ∈ (0[,]1))
6659, 65sselid 3975 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐵) ∈ (0[,]+∞))
6756, 58, 42, 43, 63, 66, 44esumpr 33772 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
6854, 67eqeq12d 2741 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → ((𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) ↔ (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵))))
6968adantr 479 . . . . . 6 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → ((𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) ↔ (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵))))
7051, 69mpbid 231 . . . . 5 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
7131, 70sylanb 579 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
72 unitssre 13508 . . . . . 6 (0[,]1) ⊆ ℝ
73 simpll1 1209 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
74 simpll2 1210 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ dom 𝑃)
7573, 74, 61syl2anc 582 . . . . . 6 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) ∈ (0[,]1))
7672, 75sselid 3975 . . . . 5 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) ∈ ℝ)
77 simpll3 1211 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ dom 𝑃)
7873, 77, 64syl2anc 582 . . . . . 6 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) ∈ (0[,]1))
7972, 78sselid 3975 . . . . 5 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) ∈ ℝ)
80 rexadd 13243 . . . . 5 (((𝑃𝐴) ∈ ℝ ∧ (𝑃𝐵) ∈ ℝ) → ((𝑃𝐴) +𝑒 (𝑃𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8176, 79, 80syl2anc 582 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → ((𝑃𝐴) +𝑒 (𝑃𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8271, 81eqtrd 2765 . . 3 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8382ex 411 . 2 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
8427, 83pm2.61dane 3019 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  cdif 3942  cun 3943  cin 3944  wss 3945  c0 4323  𝒫 cpw 4603  {cpr 4631   cuni 4908  Disj wdisj 5113   class class class wbr 5148  dom cdm 5677  cfv 6547  (class class class)co 7417  ωcom 7869  cdom 8960  cr 11137  0cc0 11138  1c1 11139   + caddc 11141  +∞cpnf 11275   +𝑒 cxad 13122  [,]cicc 13359  Σ*cesum 33733  Probcprb 34114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-ac2 10486  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217  ax-mulf 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-acn 9965  df-ac 10139  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-fac 14266  df-bc 14295  df-hash 14323  df-shft 15047  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-limsup 15448  df-clim 15465  df-rlim 15466  df-sum 15666  df-ef 16044  df-sin 16046  df-cos 16047  df-pi 16049  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-rest 17404  df-topn 17405  df-0g 17423  df-gsum 17424  df-topgen 17425  df-pt 17426  df-prds 17429  df-ordt 17483  df-xrs 17484  df-qtop 17489  df-imas 17490  df-xps 17492  df-mre 17566  df-mrc 17567  df-acs 17569  df-ps 18558  df-tsr 18559  df-plusf 18599  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-mhm 18740  df-submnd 18741  df-grp 18898  df-minusg 18899  df-sbg 18900  df-mulg 19029  df-subg 19083  df-cntz 19273  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-cring 20181  df-subrng 20488  df-subrg 20513  df-abv 20702  df-lmod 20750  df-scaf 20751  df-sra 21063  df-rgmod 21064  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22827  df-topon 22844  df-topsp 22866  df-bases 22880  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-tmd 24007  df-tgp 24008  df-tsms 24062  df-trg 24095  df-xms 24257  df-ms 24258  df-tms 24259  df-nm 24522  df-ngp 24523  df-nrg 24525  df-nlm 24526  df-ii 24828  df-cncf 24829  df-limc 25826  df-dv 25827  df-log 26521  df-esum 33734  df-siga 33815  df-meas 33902  df-prob 34115
This theorem is referenced by:  probdif  34127
  Copyright terms: Public domain W3C validator