Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probun Structured version   Visualization version   GIF version

Theorem probun 31969
Description: The probability of the union two incompatible events is the sum of their probabilities. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
probun ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))

Proof of Theorem probun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1213 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
2 simplr 769 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → 𝐴 = 𝐵)
3 simpr 488 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
4 disj3 4353 . . . . . . . . . . 11 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
54biimpi 219 . . . . . . . . . 10 ((𝐴𝐵) = ∅ → 𝐴 = (𝐴𝐵))
6 difeq1 4016 . . . . . . . . . . 11 (𝐴 = 𝐵 → (𝐴𝐵) = (𝐵𝐵))
7 difid 4269 . . . . . . . . . . 11 (𝐵𝐵) = ∅
86, 7eqtrdi 2790 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐵) = ∅)
95, 8sylan9eqr 2796 . . . . . . . . 9 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → 𝐴 = ∅)
10 eqtr2 2760 . . . . . . . . . 10 ((𝐴 = 𝐵𝐴 = ∅) → 𝐵 = ∅)
119, 10syldan 594 . . . . . . . . 9 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → 𝐵 = ∅)
129, 11uneq12d 4064 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = (∅ ∪ ∅))
13 unidm 4052 . . . . . . . 8 (∅ ∪ ∅) = ∅
1412, 13eqtrdi 2790 . . . . . . 7 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
1514fveq2d 6691 . . . . . 6 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = (𝑃‘∅))
16 probnul 31964 . . . . . 6 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
1715, 16sylan9eqr 2796 . . . . 5 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃‘(𝐴𝐵)) = 0)
189fveq2d 6691 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) = (𝑃‘∅))
1918, 16sylan9eqr 2796 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃𝐴) = 0)
2011fveq2d 6691 . . . . . . . 8 ((𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) = (𝑃‘∅))
2120, 16sylan9eqr 2796 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃𝐵) = 0)
2219, 21oveq12d 7201 . . . . . 6 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → ((𝑃𝐴) + (𝑃𝐵)) = (0 + 0))
23 00id 10906 . . . . . 6 (0 + 0) = 0
2422, 23eqtrdi 2790 . . . . 5 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → ((𝑃𝐴) + (𝑃𝐵)) = 0)
2517, 24eqtr4d 2777 . . . 4 ((𝑃 ∈ Prob ∧ (𝐴 = 𝐵 ∧ (𝐴𝐵) = ∅)) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
261, 2, 3, 25syl12anc 836 . . 3 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
2726ex 416 . 2 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴 = 𝐵) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
28 3anass 1096 . . . . . . 7 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ↔ (𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)))
2928anbi1i 627 . . . . . 6 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)) ∧ 𝐴𝐵))
30 df-3an 1090 . . . . . 6 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃)) ∧ 𝐴𝐵))
3129, 30bitr4i 281 . . . . 5 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ↔ (𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵))
32 simpl1 1192 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
33 prssi 4719 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} ⊆ dom 𝑃)
34333ad2ant2 1135 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ dom 𝑃)
3534adantr 484 . . . . . . . 8 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ⊆ dom 𝑃)
36 prex 5309 . . . . . . . . 9 {𝐴, 𝐵} ∈ V
3736elpw 4502 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝒫 dom 𝑃 ↔ {𝐴, 𝐵} ⊆ dom 𝑃)
3835, 37sylibr 237 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ∈ 𝒫 dom 𝑃)
39 prct 30637 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} ≼ ω)
40393ad2ant2 1135 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≼ ω)
4140adantr 484 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → {𝐴, 𝐵} ≼ ω)
42 simp2l 1200 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐴 ∈ dom 𝑃)
43 simp2r 1201 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐵 ∈ dom 𝑃)
44 simp3 1139 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝐴𝐵)
45 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
46 id 22 . . . . . . . . . 10 (𝑥 = 𝐵𝑥 = 𝐵)
4745, 46disjprg 5036 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
4842, 43, 44, 47syl3anc 1372 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
4948biimpar 481 . . . . . . 7 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
50 probcun 31968 . . . . . . 7 ((𝑃 ∈ Prob ∧ {𝐴, 𝐵} ∈ 𝒫 dom 𝑃 ∧ ({𝐴, 𝐵} ≼ ω ∧ Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)) → (𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥))
5132, 38, 41, 49, 50syl112anc 1375 . . . . . 6 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥))
52 uniprg 4823 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → {𝐴, 𝐵} = (𝐴𝐵))
5352fveq2d 6691 . . . . . . . . 9 ((𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → (𝑃 {𝐴, 𝐵}) = (𝑃‘(𝐴𝐵)))
54533ad2ant2 1135 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃 {𝐴, 𝐵}) = (𝑃‘(𝐴𝐵)))
55 fveq2 6687 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑃𝑥) = (𝑃𝐴))
5655adantl 485 . . . . . . . . 9 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ 𝑥 = 𝐴) → (𝑃𝑥) = (𝑃𝐴))
57 fveq2 6687 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑃𝑥) = (𝑃𝐵))
5857adantl 485 . . . . . . . . 9 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ 𝑥 = 𝐵) → (𝑃𝑥) = (𝑃𝐵))
59 unitssxrge0 31435 . . . . . . . . . 10 (0[,]1) ⊆ (0[,]+∞)
60 simp1 1137 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → 𝑃 ∈ Prob)
61 prob01 31963 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃𝐴) ∈ (0[,]1))
6260, 42, 61syl2anc 587 . . . . . . . . . 10 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐴) ∈ (0[,]1))
6359, 62sseldi 3885 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐴) ∈ (0[,]+∞))
64 prob01 31963 . . . . . . . . . . 11 ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃) → (𝑃𝐵) ∈ (0[,]1))
6560, 43, 64syl2anc 587 . . . . . . . . . 10 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐵) ∈ (0[,]1))
6659, 65sseldi 3885 . . . . . . . . 9 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → (𝑃𝐵) ∈ (0[,]+∞))
6756, 58, 42, 43, 63, 66, 44esumpr 31617 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
6854, 67eqeq12d 2755 . . . . . . 7 ((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → ((𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) ↔ (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵))))
6968adantr 484 . . . . . 6 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → ((𝑃 {𝐴, 𝐵}) = Σ*𝑥 ∈ {𝐴, 𝐵} (𝑃𝑥) ↔ (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵))))
7051, 69mpbid 235 . . . . 5 (((𝑃 ∈ Prob ∧ (𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
7131, 70sylanb 584 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) +𝑒 (𝑃𝐵)))
72 unitssre 12986 . . . . . 6 (0[,]1) ⊆ ℝ
73 simpll1 1213 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑃 ∈ Prob)
74 simpll2 1214 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ dom 𝑃)
7573, 74, 61syl2anc 587 . . . . . 6 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) ∈ (0[,]1))
7672, 75sseldi 3885 . . . . 5 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐴) ∈ ℝ)
77 simpll3 1215 . . . . . . 7 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ dom 𝑃)
7873, 77, 64syl2anc 587 . . . . . 6 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) ∈ (0[,]1))
7972, 78sseldi 3885 . . . . 5 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃𝐵) ∈ ℝ)
80 rexadd 12721 . . . . 5 (((𝑃𝐴) ∈ ℝ ∧ (𝑃𝐵) ∈ ℝ) → ((𝑃𝐴) +𝑒 (𝑃𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8176, 79, 80syl2anc 587 . . . 4 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → ((𝑃𝐴) +𝑒 (𝑃𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8271, 81eqtrd 2774 . . 3 ((((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵)))
8382ex 416 . 2 (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) ∧ 𝐴𝐵) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
8427, 83pm2.61dane 3022 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃𝐵 ∈ dom 𝑃) → ((𝐴𝐵) = ∅ → (𝑃‘(𝐴𝐵)) = ((𝑃𝐴) + (𝑃𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  cdif 3850  cun 3851  cin 3852  wss 3853  c0 4221  𝒫 cpw 4498  {cpr 4528   cuni 4806  Disj wdisj 5005   class class class wbr 5040  dom cdm 5535  cfv 6350  (class class class)co 7183  ωcom 7612  cdom 8566  cr 10627  0cc0 10628  1c1 10629   + caddc 10631  +∞cpnf 10763   +𝑒 cxad 12601  [,]cicc 12837  Σ*cesum 31578  Probcprb 31957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-inf2 9190  ax-ac2 9976  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705  ax-pre-sup 10706  ax-addf 10707  ax-mulf 10708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-disj 5006  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-of 7438  df-om 7613  df-1st 7727  df-2nd 7728  df-supp 7870  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-2o 8145  df-er 8333  df-map 8452  df-pm 8453  df-ixp 8521  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-fsupp 8920  df-fi 8961  df-sup 8992  df-inf 8993  df-oi 9060  df-dju 9416  df-card 9454  df-acn 9457  df-ac 9629  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-div 11389  df-nn 11730  df-2 11792  df-3 11793  df-4 11794  df-5 11795  df-6 11796  df-7 11797  df-8 11798  df-9 11799  df-n0 11990  df-z 12076  df-dec 12193  df-uz 12338  df-q 12444  df-rp 12486  df-xneg 12603  df-xadd 12604  df-xmul 12605  df-ioo 12838  df-ioc 12839  df-ico 12840  df-icc 12841  df-fz 12995  df-fzo 13138  df-fl 13266  df-mod 13342  df-seq 13474  df-exp 13535  df-fac 13739  df-bc 13768  df-hash 13796  df-shft 14529  df-cj 14561  df-re 14562  df-im 14563  df-sqrt 14697  df-abs 14698  df-limsup 14931  df-clim 14948  df-rlim 14949  df-sum 15149  df-ef 15526  df-sin 15528  df-cos 15529  df-pi 15531  df-struct 16601  df-ndx 16602  df-slot 16603  df-base 16605  df-sets 16606  df-ress 16607  df-plusg 16694  df-mulr 16695  df-starv 16696  df-sca 16697  df-vsca 16698  df-ip 16699  df-tset 16700  df-ple 16701  df-ds 16703  df-unif 16704  df-hom 16705  df-cco 16706  df-rest 16812  df-topn 16813  df-0g 16831  df-gsum 16832  df-topgen 16833  df-pt 16834  df-prds 16837  df-ordt 16890  df-xrs 16891  df-qtop 16896  df-imas 16897  df-xps 16899  df-mre 16973  df-mrc 16974  df-acs 16976  df-ps 17939  df-tsr 17940  df-plusf 17980  df-mgm 17981  df-sgrp 18030  df-mnd 18041  df-mhm 18085  df-submnd 18086  df-grp 18235  df-minusg 18236  df-sbg 18237  df-mulg 18356  df-subg 18407  df-cntz 18578  df-cmn 19039  df-abl 19040  df-mgp 19372  df-ur 19384  df-ring 19431  df-cring 19432  df-subrg 19665  df-abv 19720  df-lmod 19768  df-scaf 19769  df-sra 20076  df-rgmod 20077  df-psmet 20222  df-xmet 20223  df-met 20224  df-bl 20225  df-mopn 20226  df-fbas 20227  df-fg 20228  df-cnfld 20231  df-top 21658  df-topon 21675  df-topsp 21697  df-bases 21710  df-cld 21783  df-ntr 21784  df-cls 21785  df-nei 21862  df-lp 21900  df-perf 21901  df-cn 21991  df-cnp 21992  df-haus 22079  df-tx 22326  df-hmeo 22519  df-fil 22610  df-fm 22702  df-flim 22703  df-flf 22704  df-tmd 22836  df-tgp 22837  df-tsms 22891  df-trg 22924  df-xms 23086  df-ms 23087  df-tms 23088  df-nm 23348  df-ngp 23349  df-nrg 23351  df-nlm 23352  df-ii 23642  df-cncf 23643  df-limc 24631  df-dv 24632  df-log 25313  df-esum 31579  df-siga 31660  df-meas 31747  df-prob 31958
This theorem is referenced by:  probdif  31970
  Copyright terms: Public domain W3C validator