MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  updjudhcoinlf Structured version   Visualization version   GIF version

Theorem updjudhcoinlf 9621
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhcoinlf (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝐹
Allowed substitution hints:   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem updjudhcoinlf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5 (𝜑𝐹:𝐴𝐶)
2 updjud.g . . . . 5 (𝜑𝐺:𝐵𝐶)
3 updjudhf.h . . . . 5 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
41, 2, 3updjudhf 9620 . . . 4 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
54ffnd 6585 . . 3 (𝜑𝐻 Fn (𝐴𝐵))
6 inlresf 9603 . . . 4 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
7 ffn 6584 . . . 4 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) → (inl ↾ 𝐴) Fn 𝐴)
86, 7mp1i 13 . . 3 (𝜑 → (inl ↾ 𝐴) Fn 𝐴)
9 frn 6591 . . . 4 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) → ran (inl ↾ 𝐴) ⊆ (𝐴𝐵))
106, 9mp1i 13 . . 3 (𝜑 → ran (inl ↾ 𝐴) ⊆ (𝐴𝐵))
11 fnco 6533 . . 3 ((𝐻 Fn (𝐴𝐵) ∧ (inl ↾ 𝐴) Fn 𝐴 ∧ ran (inl ↾ 𝐴) ⊆ (𝐴𝐵)) → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴)
125, 8, 10, 11syl3anc 1369 . 2 (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴)
131ffnd 6585 . 2 (𝜑𝐹 Fn 𝐴)
14 fvco2 6847 . . . 4 (((inl ↾ 𝐴) Fn 𝐴𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎)))
158, 14sylan 579 . . 3 ((𝜑𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎)))
16 fvres 6775 . . . . . 6 (𝑎𝐴 → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎))
1716adantl 481 . . . . 5 ((𝜑𝑎𝐴) → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎))
1817fveq2d 6760 . . . 4 ((𝜑𝑎𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐻‘(inl‘𝑎)))
19 fveqeq2 6765 . . . . . . . 8 (𝑥 = (inl‘𝑎) → ((1st𝑥) = ∅ ↔ (1st ‘(inl‘𝑎)) = ∅))
20 2fveq3 6761 . . . . . . . 8 (𝑥 = (inl‘𝑎) → (𝐹‘(2nd𝑥)) = (𝐹‘(2nd ‘(inl‘𝑎))))
21 2fveq3 6761 . . . . . . . 8 (𝑥 = (inl‘𝑎) → (𝐺‘(2nd𝑥)) = (𝐺‘(2nd ‘(inl‘𝑎))))
2219, 20, 21ifbieq12d 4484 . . . . . . 7 (𝑥 = (inl‘𝑎) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))))
2322adantl 481 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))))
24 1stinl 9616 . . . . . . . . 9 (𝑎𝐴 → (1st ‘(inl‘𝑎)) = ∅)
2524adantl 481 . . . . . . . 8 ((𝜑𝑎𝐴) → (1st ‘(inl‘𝑎)) = ∅)
2625adantr 480 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → (1st ‘(inl‘𝑎)) = ∅)
2726iftrued 4464 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))) = (𝐹‘(2nd ‘(inl‘𝑎))))
2823, 27eqtrd 2778 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = (𝐹‘(2nd ‘(inl‘𝑎))))
29 djulcl 9599 . . . . . 6 (𝑎𝐴 → (inl‘𝑎) ∈ (𝐴𝐵))
3029adantl 481 . . . . 5 ((𝜑𝑎𝐴) → (inl‘𝑎) ∈ (𝐴𝐵))
311adantr 480 . . . . . 6 ((𝜑𝑎𝐴) → 𝐹:𝐴𝐶)
32 2ndinl 9617 . . . . . . . 8 (𝑎𝐴 → (2nd ‘(inl‘𝑎)) = 𝑎)
3332adantl 481 . . . . . . 7 ((𝜑𝑎𝐴) → (2nd ‘(inl‘𝑎)) = 𝑎)
34 simpr 484 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎𝐴)
3533, 34eqeltrd 2839 . . . . . 6 ((𝜑𝑎𝐴) → (2nd ‘(inl‘𝑎)) ∈ 𝐴)
3631, 35ffvelrnd 6944 . . . . 5 ((𝜑𝑎𝐴) → (𝐹‘(2nd ‘(inl‘𝑎))) ∈ 𝐶)
373, 28, 30, 36fvmptd2 6865 . . . 4 ((𝜑𝑎𝐴) → (𝐻‘(inl‘𝑎)) = (𝐹‘(2nd ‘(inl‘𝑎))))
3818, 37eqtrd 2778 . . 3 ((𝜑𝑎𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐹‘(2nd ‘(inl‘𝑎))))
3933fveq2d 6760 . . 3 ((𝜑𝑎𝐴) → (𝐹‘(2nd ‘(inl‘𝑎))) = (𝐹𝑎))
4015, 38, 393eqtrd 2782 . 2 ((𝜑𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐹𝑎))
4112, 13, 40eqfnfvd 6894 1 (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  c0 4253  ifcif 4456  cmpt 5153  ran crn 5581  cres 5582  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  1st c1st 7802  2nd c2nd 7803  cdju 9587  inlcinl 9588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1st 7804  df-2nd 7805  df-1o 8267  df-dju 9590  df-inl 9591
This theorem is referenced by:  updjud  9623
  Copyright terms: Public domain W3C validator