| Step | Hyp | Ref
| Expression |
| 1 | | updjud.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| 2 | | updjud.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
| 3 | | updjudhf.h |
. . . . 5
⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) |
| 4 | 1, 2, 3 | updjudhf 9950 |
. . . 4
⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |
| 5 | 4 | ffnd 6712 |
. . 3
⊢ (𝜑 → 𝐻 Fn (𝐴 ⊔ 𝐵)) |
| 6 | | inlresf 9933 |
. . . 4
⊢ (inl
↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
| 7 | | ffn 6711 |
. . . 4
⊢ ((inl
↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) → (inl ↾ 𝐴) Fn 𝐴) |
| 8 | 6, 7 | mp1i 13 |
. . 3
⊢ (𝜑 → (inl ↾ 𝐴) Fn 𝐴) |
| 9 | | frn 6718 |
. . . 4
⊢ ((inl
↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) → ran (inl ↾ 𝐴) ⊆ (𝐴 ⊔ 𝐵)) |
| 10 | 6, 9 | mp1i 13 |
. . 3
⊢ (𝜑 → ran (inl ↾ 𝐴) ⊆ (𝐴 ⊔ 𝐵)) |
| 11 | | fnco 6661 |
. . 3
⊢ ((𝐻 Fn (𝐴 ⊔ 𝐵) ∧ (inl ↾ 𝐴) Fn 𝐴 ∧ ran (inl ↾ 𝐴) ⊆ (𝐴 ⊔ 𝐵)) → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴) |
| 12 | 5, 8, 10, 11 | syl3anc 1373 |
. 2
⊢ (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴) |
| 13 | 1 | ffnd 6712 |
. 2
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 14 | | fvco2 6981 |
. . . 4
⊢ (((inl
↾ 𝐴) Fn 𝐴 ∧ 𝑎 ∈ 𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎))) |
| 15 | 8, 14 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎))) |
| 16 | | fvres 6900 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎)) |
| 17 | 16 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎)) |
| 18 | 17 | fveq2d 6885 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐻‘(inl‘𝑎))) |
| 19 | | fveqeq2 6890 |
. . . . . . . 8
⊢ (𝑥 = (inl‘𝑎) → ((1st ‘𝑥) = ∅ ↔
(1st ‘(inl‘𝑎)) = ∅)) |
| 20 | | 2fveq3 6886 |
. . . . . . . 8
⊢ (𝑥 = (inl‘𝑎) → (𝐹‘(2nd ‘𝑥)) = (𝐹‘(2nd
‘(inl‘𝑎)))) |
| 21 | | 2fveq3 6886 |
. . . . . . . 8
⊢ (𝑥 = (inl‘𝑎) → (𝐺‘(2nd ‘𝑥)) = (𝐺‘(2nd
‘(inl‘𝑎)))) |
| 22 | 19, 20, 21 | ifbieq12d 4534 |
. . . . . . 7
⊢ (𝑥 = (inl‘𝑎) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = if((1st
‘(inl‘𝑎)) =
∅, (𝐹‘(2nd
‘(inl‘𝑎))),
(𝐺‘(2nd
‘(inl‘𝑎))))) |
| 23 | 22 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = if((1st
‘(inl‘𝑎)) =
∅, (𝐹‘(2nd
‘(inl‘𝑎))),
(𝐺‘(2nd
‘(inl‘𝑎))))) |
| 24 | | 1stinl 9946 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐴 → (1st
‘(inl‘𝑎)) =
∅) |
| 25 | 24 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (1st
‘(inl‘𝑎)) =
∅) |
| 26 | 25 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑎)) → (1st
‘(inl‘𝑎)) =
∅) |
| 27 | 26 | iftrued 4513 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st
‘(inl‘𝑎)) =
∅, (𝐹‘(2nd
‘(inl‘𝑎))),
(𝐺‘(2nd
‘(inl‘𝑎)))) =
(𝐹‘(2nd
‘(inl‘𝑎)))) |
| 28 | 23, 27 | eqtrd 2771 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = (𝐹‘(2nd
‘(inl‘𝑎)))) |
| 29 | | djulcl 9929 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 → (inl‘𝑎) ∈ (𝐴 ⊔ 𝐵)) |
| 30 | 29 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (inl‘𝑎) ∈ (𝐴 ⊔ 𝐵)) |
| 31 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐹:𝐴⟶𝐶) |
| 32 | | 2ndinl 9947 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝐴 → (2nd
‘(inl‘𝑎)) =
𝑎) |
| 33 | 32 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (2nd
‘(inl‘𝑎)) =
𝑎) |
| 34 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
| 35 | 33, 34 | eqeltrd 2835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (2nd
‘(inl‘𝑎))
∈ 𝐴) |
| 36 | 31, 35 | ffvelcdmd 7080 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐹‘(2nd
‘(inl‘𝑎)))
∈ 𝐶) |
| 37 | 3, 28, 30, 36 | fvmptd2 6999 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐻‘(inl‘𝑎)) = (𝐹‘(2nd
‘(inl‘𝑎)))) |
| 38 | 18, 37 | eqtrd 2771 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐹‘(2nd
‘(inl‘𝑎)))) |
| 39 | 33 | fveq2d 6885 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐹‘(2nd
‘(inl‘𝑎))) =
(𝐹‘𝑎)) |
| 40 | 15, 38, 39 | 3eqtrd 2775 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐹‘𝑎)) |
| 41 | 12, 13, 40 | eqfnfvd 7029 |
1
⊢ (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹) |