![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimioompt | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpimioompt.x | β’ β²π₯π |
smfpimioompt.s | β’ (π β π β SAlg) |
smfpimioompt.a | β’ (π β π΄ β π) |
smfpimioompt.b | β’ ((π β§ π₯ β π΄) β π΅ β π) |
smfpimioompt.m | β’ (π β (π₯ β π΄ β¦ π΅) β (SMblFnβπ)) |
smfpimioompt.l | β’ (π β πΏ β β*) |
smfpimioompt.r | β’ (π β π β β*) |
Ref | Expression |
---|---|
smfpimioompt | β’ (π β {π₯ β π΄ β£ π΅ β (πΏ(,)π )} β (π βΎt π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimioompt.x | . . 3 β’ β²π₯π | |
2 | smfpimioompt.l | . . 3 β’ (π β πΏ β β*) | |
3 | smfpimioompt.r | . . 3 β’ (π β π β β*) | |
4 | smfpimioompt.s | . . . . . . 7 β’ (π β π β SAlg) | |
5 | smfpimioompt.m | . . . . . . 7 β’ (π β (π₯ β π΄ β¦ π΅) β (SMblFnβπ)) | |
6 | eqid 2724 | . . . . . . 7 β’ dom (π₯ β π΄ β¦ π΅) = dom (π₯ β π΄ β¦ π΅) | |
7 | 4, 5, 6 | smff 45933 | . . . . . 6 β’ (π β (π₯ β π΄ β¦ π΅):dom (π₯ β π΄ β¦ π΅)βΆβ) |
8 | eqid 2724 | . . . . . . . 8 β’ (π₯ β π΄ β¦ π΅) = (π₯ β π΄ β¦ π΅) | |
9 | smfpimioompt.b | . . . . . . . 8 β’ ((π β§ π₯ β π΄) β π΅ β π) | |
10 | 1, 8, 9 | dmmptdf 44408 | . . . . . . 7 β’ (π β dom (π₯ β π΄ β¦ π΅) = π΄) |
11 | 10 | feq2d 6693 | . . . . . 6 β’ (π β ((π₯ β π΄ β¦ π΅):dom (π₯ β π΄ β¦ π΅)βΆβ β (π₯ β π΄ β¦ π΅):π΄βΆβ)) |
12 | 7, 11 | mpbid 231 | . . . . 5 β’ (π β (π₯ β π΄ β¦ π΅):π΄βΆβ) |
13 | 12 | fvmptelcdm 7104 | . . . 4 β’ ((π β§ π₯ β π΄) β π΅ β β) |
14 | 13 | rexrd 11261 | . . 3 β’ ((π β§ π₯ β π΄) β π΅ β β*) |
15 | 1, 2, 3, 14 | pimiooltgt 45911 | . 2 β’ (π β {π₯ β π΄ β£ π΅ β (πΏ(,)π )} = ({π₯ β π΄ β£ π΅ < π } β© {π₯ β π΄ β£ πΏ < π΅})) |
16 | smfpimioompt.a | . . . 4 β’ (π β π΄ β π) | |
17 | eqid 2724 | . . . 4 β’ (π βΎt π΄) = (π βΎt π΄) | |
18 | 4, 16, 17 | subsalsal 45560 | . . 3 β’ (π β (π βΎt π΄) β SAlg) |
19 | 1, 4, 9, 5, 3 | smfpimltxrmpt 45960 | . . 3 β’ (π β {π₯ β π΄ β£ π΅ < π } β (π βΎt π΄)) |
20 | 1, 4, 9, 5, 2 | smfpimgtxrmpt 45986 | . . 3 β’ (π β {π₯ β π΄ β£ πΏ < π΅} β (π βΎt π΄)) |
21 | 18, 19, 20 | salincld 45553 | . 2 β’ (π β ({π₯ β π΄ β£ π΅ < π } β© {π₯ β π΄ β£ πΏ < π΅}) β (π βΎt π΄)) |
22 | 15, 21 | eqeltrd 2825 | 1 β’ (π β {π₯ β π΄ β£ π΅ β (πΏ(,)π )} β (π βΎt π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β²wnf 1777 β wcel 2098 {crab 3424 β© cin 3939 class class class wbr 5138 β¦ cmpt 5221 dom cdm 5666 βΆwf 6529 βcfv 6533 (class class class)co 7401 βcr 11105 β*cxr 11244 < clt 11245 (,)cioo 13321 βΎt crest 17365 SAlgcsalg 45509 SMblFncsmblfn 45896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cc 10426 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-ioo 13325 df-ico 13327 df-fl 13754 df-rest 17367 df-salg 45510 df-smblfn 45897 |
This theorem is referenced by: smfpimioo 45988 smfresal 45989 smfrec 45990 smfmullem4 45995 |
Copyright terms: Public domain | W3C validator |