Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimioompt Structured version   Visualization version   GIF version

Theorem smfpimioompt 44288
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimioompt.x 𝑥𝜑
smfpimioompt.s (𝜑𝑆 ∈ SAlg)
smfpimioompt.a (𝜑𝐴𝑉)
smfpimioompt.b ((𝜑𝑥𝐴) → 𝐵𝑊)
smfpimioompt.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimioompt.l (𝜑𝐿 ∈ ℝ*)
smfpimioompt.r (𝜑𝑅 ∈ ℝ*)
Assertion
Ref Expression
smfpimioompt (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆t 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem smfpimioompt
StepHypRef Expression
1 smfpimioompt.x . . 3 𝑥𝜑
2 smfpimioompt.l . . 3 (𝜑𝐿 ∈ ℝ*)
3 smfpimioompt.r . . 3 (𝜑𝑅 ∈ ℝ*)
4 smfpimioompt.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
5 smfpimioompt.m . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
6 eqid 2740 . . . . . . 7 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
74, 5, 6smff 44236 . . . . . 6 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
8 eqid 2740 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
9 smfpimioompt.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑊)
101, 8, 9dmmptdf 42733 . . . . . . 7 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
1110feq2d 6584 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ ↔ (𝑥𝐴𝐵):𝐴⟶ℝ))
127, 11mpbid 231 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
1312fvmptelrn 6984 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
1413rexrd 11026 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
151, 2, 3, 14pimiooltgt 44216 . 2 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
16 smfpimioompt.a . . . 4 (𝜑𝐴𝑉)
17 eqid 2740 . . . 4 (𝑆t 𝐴) = (𝑆t 𝐴)
184, 16, 17subsalsal 43869 . . 3 (𝜑 → (𝑆t 𝐴) ∈ SAlg)
191, 4, 9, 5, 3smfpimltxrmpt 44262 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
201, 4, 9, 5, 2smfpimgtxrmpt 44287 . . 3 (𝜑 → {𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴))
2118, 19, 20salincld 43862 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) ∈ (𝑆t 𝐴))
2215, 21eqeltrd 2841 1 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1790  wcel 2110  {crab 3070  cin 3891   class class class wbr 5079  cmpt 5162  dom cdm 5590  wf 6428  cfv 6432  (class class class)co 7271  cr 10871  *cxr 11009   < clt 11010  (,)cioo 13078  t crest 17129  SAlgcsalg 43820  SMblFncsmblfn 44204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cc 10192  ax-ac2 10220  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-card 9698  df-acn 9701  df-ac 9873  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-ioo 13082  df-ico 13084  df-fl 13510  df-rest 17131  df-salg 43821  df-smblfn 44205
This theorem is referenced by:  smfpimioo  44289  smfresal  44290  smfrec  44291  smfmullem4  44296
  Copyright terms: Public domain W3C validator