Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimioompt | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpimioompt.x | ⊢ Ⅎ𝑥𝜑 |
smfpimioompt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimioompt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
smfpimioompt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
smfpimioompt.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
smfpimioompt.l | ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
smfpimioompt.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
Ref | Expression |
---|---|
smfpimioompt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimioompt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | smfpimioompt.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ*) | |
3 | smfpimioompt.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
4 | smfpimioompt.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
5 | smfpimioompt.m | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
6 | eqid 2739 | . . . . . . 7 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 4, 5, 6 | smff 44219 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ) |
8 | eqid 2739 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | smfpimioompt.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
10 | 1, 8, 9 | dmmptdf 42716 | . . . . . . 7 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
11 | 10 | feq2d 6582 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ)) |
12 | 7, 11 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
13 | 12 | fvmptelrn 6981 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
14 | 13 | rexrd 11009 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
15 | 1, 2, 3, 14 | pimiooltgt 44199 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵})) |
16 | smfpimioompt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
17 | eqid 2739 | . . . 4 ⊢ (𝑆 ↾t 𝐴) = (𝑆 ↾t 𝐴) | |
18 | 4, 16, 17 | subsalsal 43852 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) ∈ SAlg) |
19 | 1, 4, 9, 5, 3 | smfpimltxrmpt 44245 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
20 | 1, 4, 9, 5, 2 | smfpimgtxrmpt 44270 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
21 | 18, 19, 20 | salincld 43845 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) ∈ (𝑆 ↾t 𝐴)) |
22 | 15, 21 | eqeltrd 2840 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1789 ∈ wcel 2109 {crab 3069 ∩ cin 3890 class class class wbr 5078 ↦ cmpt 5161 dom cdm 5588 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 ℝ*cxr 10992 < clt 10993 (,)cioo 13061 ↾t crest 17112 SAlgcsalg 43803 SMblFncsmblfn 44187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cc 10175 ax-ac2 10203 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-card 9681 df-acn 9684 df-ac 9856 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-ioo 13065 df-ico 13067 df-fl 13493 df-rest 17114 df-salg 43804 df-smblfn 44188 |
This theorem is referenced by: smfpimioo 44272 smfresal 44273 smfrec 44274 smfmullem4 44279 |
Copyright terms: Public domain | W3C validator |