![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimioompt | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpimioompt.x | β’ β²π₯π |
smfpimioompt.s | β’ (π β π β SAlg) |
smfpimioompt.a | β’ (π β π΄ β π) |
smfpimioompt.b | β’ ((π β§ π₯ β π΄) β π΅ β π) |
smfpimioompt.m | β’ (π β (π₯ β π΄ β¦ π΅) β (SMblFnβπ)) |
smfpimioompt.l | β’ (π β πΏ β β*) |
smfpimioompt.r | β’ (π β π β β*) |
Ref | Expression |
---|---|
smfpimioompt | β’ (π β {π₯ β π΄ β£ π΅ β (πΏ(,)π )} β (π βΎt π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimioompt.x | . . 3 β’ β²π₯π | |
2 | smfpimioompt.l | . . 3 β’ (π β πΏ β β*) | |
3 | smfpimioompt.r | . . 3 β’ (π β π β β*) | |
4 | smfpimioompt.s | . . . . . . 7 β’ (π β π β SAlg) | |
5 | smfpimioompt.m | . . . . . . 7 β’ (π β (π₯ β π΄ β¦ π΅) β (SMblFnβπ)) | |
6 | eqid 2732 | . . . . . . 7 β’ dom (π₯ β π΄ β¦ π΅) = dom (π₯ β π΄ β¦ π΅) | |
7 | 4, 5, 6 | smff 45434 | . . . . . 6 β’ (π β (π₯ β π΄ β¦ π΅):dom (π₯ β π΄ β¦ π΅)βΆβ) |
8 | eqid 2732 | . . . . . . . 8 β’ (π₯ β π΄ β¦ π΅) = (π₯ β π΄ β¦ π΅) | |
9 | smfpimioompt.b | . . . . . . . 8 β’ ((π β§ π₯ β π΄) β π΅ β π) | |
10 | 1, 8, 9 | dmmptdf 43908 | . . . . . . 7 β’ (π β dom (π₯ β π΄ β¦ π΅) = π΄) |
11 | 10 | feq2d 6700 | . . . . . 6 β’ (π β ((π₯ β π΄ β¦ π΅):dom (π₯ β π΄ β¦ π΅)βΆβ β (π₯ β π΄ β¦ π΅):π΄βΆβ)) |
12 | 7, 11 | mpbid 231 | . . . . 5 β’ (π β (π₯ β π΄ β¦ π΅):π΄βΆβ) |
13 | 12 | fvmptelcdm 7109 | . . . 4 β’ ((π β§ π₯ β π΄) β π΅ β β) |
14 | 13 | rexrd 11260 | . . 3 β’ ((π β§ π₯ β π΄) β π΅ β β*) |
15 | 1, 2, 3, 14 | pimiooltgt 45412 | . 2 β’ (π β {π₯ β π΄ β£ π΅ β (πΏ(,)π )} = ({π₯ β π΄ β£ π΅ < π } β© {π₯ β π΄ β£ πΏ < π΅})) |
16 | smfpimioompt.a | . . . 4 β’ (π β π΄ β π) | |
17 | eqid 2732 | . . . 4 β’ (π βΎt π΄) = (π βΎt π΄) | |
18 | 4, 16, 17 | subsalsal 45061 | . . 3 β’ (π β (π βΎt π΄) β SAlg) |
19 | 1, 4, 9, 5, 3 | smfpimltxrmpt 45461 | . . 3 β’ (π β {π₯ β π΄ β£ π΅ < π } β (π βΎt π΄)) |
20 | 1, 4, 9, 5, 2 | smfpimgtxrmpt 45487 | . . 3 β’ (π β {π₯ β π΄ β£ πΏ < π΅} β (π βΎt π΄)) |
21 | 18, 19, 20 | salincld 45054 | . 2 β’ (π β ({π₯ β π΄ β£ π΅ < π } β© {π₯ β π΄ β£ πΏ < π΅}) β (π βΎt π΄)) |
22 | 15, 21 | eqeltrd 2833 | 1 β’ (π β {π₯ β π΄ β£ π΅ β (πΏ(,)π )} β (π βΎt π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β²wnf 1785 β wcel 2106 {crab 3432 β© cin 3946 class class class wbr 5147 β¦ cmpt 5230 dom cdm 5675 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcr 11105 β*cxr 11243 < clt 11244 (,)cioo 13320 βΎt crest 17362 SAlgcsalg 45010 SMblFncsmblfn 45397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cc 10426 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-ioo 13324 df-ico 13326 df-fl 13753 df-rest 17364 df-salg 45011 df-smblfn 45398 |
This theorem is referenced by: smfpimioo 45489 smfresal 45490 smfrec 45491 smfmullem4 45496 |
Copyright terms: Public domain | W3C validator |