![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimioompt | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpimioompt.x | ⊢ Ⅎ𝑥𝜑 |
smfpimioompt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimioompt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
smfpimioompt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
smfpimioompt.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
smfpimioompt.l | ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
smfpimioompt.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
Ref | Expression |
---|---|
smfpimioompt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimioompt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | smfpimioompt.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ*) | |
3 | smfpimioompt.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
4 | smfpimioompt.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
5 | smfpimioompt.m | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
6 | eqid 2725 | . . . . . . 7 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 4, 5, 6 | smff 46263 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ) |
8 | eqid 2725 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | smfpimioompt.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
10 | 1, 8, 9 | dmmptdf 44741 | . . . . . . 7 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
11 | 10 | feq2d 6709 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ)) |
12 | 7, 11 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
13 | 12 | fvmptelcdm 7122 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
14 | 13 | rexrd 11301 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
15 | 1, 2, 3, 14 | pimiooltgt 46241 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵})) |
16 | smfpimioompt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
17 | eqid 2725 | . . . 4 ⊢ (𝑆 ↾t 𝐴) = (𝑆 ↾t 𝐴) | |
18 | 4, 16, 17 | subsalsal 45890 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) ∈ SAlg) |
19 | 1, 4, 9, 5, 3 | smfpimltxrmpt 46290 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
20 | 1, 4, 9, 5, 2 | smfpimgtxrmpt 46316 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
21 | 18, 19, 20 | salincld 45883 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) ∈ (𝑆 ↾t 𝐴)) |
22 | 15, 21 | eqeltrd 2825 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 Ⅎwnf 1777 ∈ wcel 2098 {crab 3418 ∩ cin 3943 class class class wbr 5149 ↦ cmpt 5232 dom cdm 5678 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ℝcr 11144 ℝ*cxr 11284 < clt 11285 (,)cioo 13364 ↾t crest 17421 SAlgcsalg 45839 SMblFncsmblfn 46226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9671 ax-cc 10465 ax-ac2 10493 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9472 df-inf 9473 df-card 9969 df-acn 9972 df-ac 10146 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-q 12971 df-rp 13015 df-ioo 13368 df-ico 13370 df-fl 13798 df-rest 17423 df-salg 45840 df-smblfn 46227 |
This theorem is referenced by: smfpimioo 46318 smfresal 46319 smfrec 46320 smfmullem4 46325 |
Copyright terms: Public domain | W3C validator |