| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimioompt | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfpimioompt.x | ⊢ Ⅎ𝑥𝜑 |
| smfpimioompt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimioompt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| smfpimioompt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| smfpimioompt.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfpimioompt.l | ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
| smfpimioompt.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| smfpimioompt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfpimioompt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | smfpimioompt.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ*) | |
| 3 | smfpimioompt.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 4 | smfpimioompt.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 5 | smfpimioompt.m | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 6 | eqid 2730 | . . . . . . 7 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 7 | 4, 5, 6 | smff 46737 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ) |
| 8 | eqid 2730 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 9 | smfpimioompt.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
| 10 | 1, 8, 9 | dmmptdf 45225 | . . . . . . 7 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 11 | 10 | feq2d 6675 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ)) |
| 12 | 7, 11 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
| 13 | 12 | fvmptelcdm 7088 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 14 | 13 | rexrd 11231 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 15 | 1, 2, 3, 14 | pimiooltgt 46715 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵})) |
| 16 | smfpimioompt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 17 | eqid 2730 | . . . 4 ⊢ (𝑆 ↾t 𝐴) = (𝑆 ↾t 𝐴) | |
| 18 | 4, 16, 17 | subsalsal 46364 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) ∈ SAlg) |
| 19 | 1, 4, 9, 5, 3 | smfpimltxrmpt 46764 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
| 20 | 1, 4, 9, 5, 2 | smfpimgtxrmpt 46790 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
| 21 | 18, 19, 20 | salincld 46357 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) ∈ (𝑆 ↾t 𝐴)) |
| 22 | 15, 21 | eqeltrd 2829 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 {crab 3408 ∩ cin 3916 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 ℝ*cxr 11214 < clt 11215 (,)cioo 13313 ↾t crest 17390 SAlgcsalg 46313 SMblFncsmblfn 46700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-ioo 13317 df-ico 13319 df-fl 13761 df-rest 17392 df-salg 46314 df-smblfn 46701 |
| This theorem is referenced by: smfpimioo 46792 smfresal 46793 smfrec 46794 smfmullem4 46799 |
| Copyright terms: Public domain | W3C validator |