Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimioompt | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpimioompt.x | ⊢ Ⅎ𝑥𝜑 |
smfpimioompt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimioompt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
smfpimioompt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
smfpimioompt.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
smfpimioompt.l | ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
smfpimioompt.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
Ref | Expression |
---|---|
smfpimioompt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimioompt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | smfpimioompt.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ*) | |
3 | smfpimioompt.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
4 | smfpimioompt.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
5 | smfpimioompt.m | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
6 | eqid 2736 | . . . . . . 7 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 4, 5, 6 | smff 44500 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ) |
8 | eqid 2736 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | smfpimioompt.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
10 | 1, 8, 9 | dmmptdf 42984 | . . . . . . 7 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
11 | 10 | feq2d 6616 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ)) |
12 | 7, 11 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
13 | 12 | fvmptelcdm 7019 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
14 | 13 | rexrd 11075 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
15 | 1, 2, 3, 14 | pimiooltgt 44478 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵})) |
16 | smfpimioompt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
17 | eqid 2736 | . . . 4 ⊢ (𝑆 ↾t 𝐴) = (𝑆 ↾t 𝐴) | |
18 | 4, 16, 17 | subsalsal 44127 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) ∈ SAlg) |
19 | 1, 4, 9, 5, 3 | smfpimltxrmpt 44527 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) |
20 | 1, 4, 9, 5, 2 | smfpimgtxrmpt 44553 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
21 | 18, 19, 20 | salincld 44120 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) ∈ (𝑆 ↾t 𝐴)) |
22 | 15, 21 | eqeltrd 2837 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 Ⅎwnf 1783 ∈ wcel 2104 {crab 3330 ∩ cin 3891 class class class wbr 5081 ↦ cmpt 5164 dom cdm 5600 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ℝcr 10920 ℝ*cxr 11058 < clt 11059 (,)cioo 13129 ↾t crest 17180 SAlgcsalg 44078 SMblFncsmblfn 44463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cc 10241 ax-ac2 10269 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-inf 9250 df-card 9745 df-acn 9748 df-ac 9922 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-q 12739 df-rp 12781 df-ioo 13133 df-ico 13135 df-fl 13562 df-rest 17182 df-salg 44079 df-smblfn 44464 |
This theorem is referenced by: smfpimioo 44555 smfresal 44556 smfrec 44557 smfmullem4 44562 |
Copyright terms: Public domain | W3C validator |