MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcntss Structured version   Visualization version   GIF version

Theorem infcntss 9064
Description: Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.)
Hypothesis
Ref Expression
infcntss.1 𝐴 ∈ V
Assertion
Ref Expression
infcntss (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Distinct variable group:   𝑥,𝐴

Proof of Theorem infcntss
StepHypRef Expression
1 infcntss.1 . . 3 𝐴 ∈ V
21domen 8732 . 2 (ω ≼ 𝐴 ↔ ∃𝑥(ω ≈ 𝑥𝑥𝐴))
3 ensym 8770 . . . 4 (ω ≈ 𝑥𝑥 ≈ ω)
43anim1ci 616 . . 3 ((ω ≈ 𝑥𝑥𝐴) → (𝑥𝐴𝑥 ≈ ω))
54eximi 1841 . 2 (∃𝑥(ω ≈ 𝑥𝑥𝐴) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
62, 5sylbi 216 1 (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1786  wcel 2110  Vcvv 3431  wss 3892   class class class wbr 5079  ωcom 7704  cen 8711  cdom 8712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-er 8479  df-en 8715  df-dom 8716
This theorem is referenced by:  pibt2  35582
  Copyright terms: Public domain W3C validator