MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcntss Structured version   Visualization version   GIF version

Theorem infcntss 9280
Description: Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.)
Hypothesis
Ref Expression
infcntss.1 𝐴 ∈ V
Assertion
Ref Expression
infcntss (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Distinct variable group:   𝑥,𝐴

Proof of Theorem infcntss
StepHypRef Expression
1 infcntss.1 . . 3 𝐴 ∈ V
21domen 8936 . 2 (ω ≼ 𝐴 ↔ ∃𝑥(ω ≈ 𝑥𝑥𝐴))
3 ensym 8977 . . . 4 (ω ≈ 𝑥𝑥 ≈ ω)
43anim1ci 616 . . 3 ((ω ≈ 𝑥𝑥𝐴) → (𝑥𝐴𝑥 ≈ ω))
54eximi 1835 . 2 (∃𝑥(ω ≈ 𝑥𝑥𝐴) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
62, 5sylbi 217 1 (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  Vcvv 3450  wss 3917   class class class wbr 5110  ωcom 7845  cen 8918  cdom 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-er 8674  df-en 8922  df-dom 8923
This theorem is referenced by:  pibt2  37412
  Copyright terms: Public domain W3C validator