![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infcntss | Structured version Visualization version GIF version |
Description: Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
infcntss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
infcntss | ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcntss.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | domen 8957 | . 2 ⊢ (ω ≼ 𝐴 ↔ ∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
3 | ensym 8999 | . . . 4 ⊢ (ω ≈ 𝑥 → 𝑥 ≈ ω) | |
4 | 3 | anim1ci 617 | . . 3 ⊢ ((ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
5 | 4 | eximi 1838 | . 2 ⊢ (∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
6 | 2, 5 | sylbi 216 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 class class class wbr 5149 ωcom 7855 ≈ cen 8936 ≼ cdom 8937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-er 8703 df-en 8940 df-dom 8941 |
This theorem is referenced by: pibt2 36298 |
Copyright terms: Public domain | W3C validator |