MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcntss Structured version   Visualization version   GIF version

Theorem infcntss 9362
Description: Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.)
Hypothesis
Ref Expression
infcntss.1 𝐴 ∈ V
Assertion
Ref Expression
infcntss (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Distinct variable group:   𝑥,𝐴

Proof of Theorem infcntss
StepHypRef Expression
1 infcntss.1 . . 3 𝐴 ∈ V
21domen 9002 . 2 (ω ≼ 𝐴 ↔ ∃𝑥(ω ≈ 𝑥𝑥𝐴))
3 ensym 9043 . . . 4 (ω ≈ 𝑥𝑥 ≈ ω)
43anim1ci 616 . . 3 ((ω ≈ 𝑥𝑥𝐴) → (𝑥𝐴𝑥 ≈ ω))
54eximi 1835 . 2 (∃𝑥(ω ≈ 𝑥𝑥𝐴) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
62, 5sylbi 217 1 (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2108  Vcvv 3480  wss 3951   class class class wbr 5143  ωcom 7887  cen 8982  cdom 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-er 8745  df-en 8986  df-dom 8987
This theorem is referenced by:  pibt2  37418
  Copyright terms: Public domain W3C validator