| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infcntss | Structured version Visualization version GIF version | ||
| Description: Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| infcntss.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| infcntss | ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcntss.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | domen 8879 | . 2 ⊢ (ω ≼ 𝐴 ↔ ∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
| 3 | ensym 8920 | . . . 4 ⊢ (ω ≈ 𝑥 → 𝑥 ≈ ω) | |
| 4 | 3 | anim1ci 616 | . . 3 ⊢ ((ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
| 5 | 4 | eximi 1836 | . 2 ⊢ (∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
| 6 | 2, 5 | sylbi 217 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2110 Vcvv 3434 ⊆ wss 3900 class class class wbr 5089 ωcom 7791 ≈ cen 8861 ≼ cdom 8862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-er 8617 df-en 8865 df-dom 8866 |
| This theorem is referenced by: pibt2 37430 |
| Copyright terms: Public domain | W3C validator |