MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ram0 Structured version   Visualization version   GIF version

Theorem ram0 17000
Description: The Ramsey number when 𝑅 = ∅. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ram0 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀)

Proof of Theorem ram0
Dummy variables 𝑏 𝑓 𝑐 𝑠 𝑥 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 id 22 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
3 0ex 5265 . . . 4 ∅ ∈ V
43a1i 11 . . 3 (𝑀 ∈ ℕ0 → ∅ ∈ V)
5 f0 6744 . . . 4 ∅:∅⟶ℕ0
65a1i 11 . . 3 (𝑀 ∈ ℕ0 → ∅:∅⟶ℕ0)
7 f00 6745 . . . . 5 (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅ ↔ (𝑓 = ∅ ∧ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅))
8 vex 3454 . . . . . . . . . 10 𝑠 ∈ V
9 simpl 482 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → 𝑀 ∈ ℕ0)
101hashbcval 16980 . . . . . . . . . 10 ((𝑠 ∈ V ∧ 𝑀 ∈ ℕ0) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = {𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀})
118, 9, 10sylancr 587 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = {𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀})
12 hashfz1 14318 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
1312breq1d 5120 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → ((♯‘(1...𝑀)) ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠)))
1413biimpar 477 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (♯‘(1...𝑀)) ≤ (♯‘𝑠))
15 fzfid 13945 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (1...𝑀) ∈ Fin)
16 hashdom 14351 . . . . . . . . . . . . . . 15 (((1...𝑀) ∈ Fin ∧ 𝑠 ∈ V) → ((♯‘(1...𝑀)) ≤ (♯‘𝑠) ↔ (1...𝑀) ≼ 𝑠))
1715, 8, 16sylancl 586 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ((♯‘(1...𝑀)) ≤ (♯‘𝑠) ↔ (1...𝑀) ≼ 𝑠))
1814, 17mpbid 232 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (1...𝑀) ≼ 𝑠)
198domen 8936 . . . . . . . . . . . . 13 ((1...𝑀) ≼ 𝑠 ↔ ∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠))
2018, 19sylib 218 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠))
21 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → 𝑥𝑠)
22 velpw 4571 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
2321, 22sylibr 234 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → 𝑥 ∈ 𝒫 𝑠)
24 hasheni 14320 . . . . . . . . . . . . . . . . 17 ((1...𝑀) ≈ 𝑥 → (♯‘(1...𝑀)) = (♯‘𝑥))
2524ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (♯‘(1...𝑀)) = (♯‘𝑥))
2612ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (♯‘(1...𝑀)) = 𝑀)
2725, 26eqtr3d 2767 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (♯‘𝑥) = 𝑀)
2823, 27jca 511 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀))
2928ex 412 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (((1...𝑀) ≈ 𝑥𝑥𝑠) → (𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀)))
3029eximdv 1917 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠) → ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀)))
3120, 30mpd 15 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀))
32 df-rex 3055 . . . . . . . . . . 11 (∃𝑥 ∈ 𝒫 𝑠(♯‘𝑥) = 𝑀 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀))
3331, 32sylibr 234 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ∃𝑥 ∈ 𝒫 𝑠(♯‘𝑥) = 𝑀)
34 rabn0 4355 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀} ≠ ∅ ↔ ∃𝑥 ∈ 𝒫 𝑠(♯‘𝑥) = 𝑀)
3533, 34sylibr 234 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → {𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀} ≠ ∅)
3611, 35eqnetrd 2993 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ≠ ∅)
3736neneqd 2931 . . . . . . 7 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ¬ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
3837pm2.21d 121 . . . . . 6 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ((𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅ → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
3938adantld 490 . . . . 5 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ((𝑓 = ∅ ∧ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅) → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
407, 39biimtrid 242 . . . 4 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅ → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4140impr 454 . . 3 ((𝑀 ∈ ℕ0 ∧ (𝑀 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅)) → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
421, 2, 4, 6, 2, 41ramub 16991 . 2 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ≤ 𝑀)
43 nnnn0 12456 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
443a1i 11 . . . . . 6 (𝑀 ∈ ℕ → ∅ ∈ V)
455a1i 11 . . . . . 6 (𝑀 ∈ ℕ → ∅:∅⟶ℕ0)
46 nnm1nn0 12490 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
47 f0 6744 . . . . . . 7 ∅:∅⟶∅
48 fzfid 13945 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (1...(𝑀 − 1)) ∈ Fin)
491hashbc2 16984 . . . . . . . . . . 11 (((1...(𝑀 − 1)) ∈ Fin ∧ 𝑀 ∈ ℕ0) → (♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = ((♯‘(1...(𝑀 − 1)))C𝑀))
5048, 43, 49syl2anc 584 . . . . . . . . . 10 (𝑀 ∈ ℕ → (♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = ((♯‘(1...(𝑀 − 1)))C𝑀))
51 hashfz1 14318 . . . . . . . . . . . 12 ((𝑀 − 1) ∈ ℕ0 → (♯‘(1...(𝑀 − 1))) = (𝑀 − 1))
5246, 51syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (♯‘(1...(𝑀 − 1))) = (𝑀 − 1))
5352oveq1d 7405 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((♯‘(1...(𝑀 − 1)))C𝑀) = ((𝑀 − 1)C𝑀))
54 nnz 12557 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
55 nnre 12200 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5655ltm1d 12122 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑀 − 1) < 𝑀)
5756olcd 874 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 < 0 ∨ (𝑀 − 1) < 𝑀))
58 bcval4 14279 . . . . . . . . . . 11 (((𝑀 − 1) ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑀 < 0 ∨ (𝑀 − 1) < 𝑀)) → ((𝑀 − 1)C𝑀) = 0)
5946, 54, 57, 58syl3anc 1373 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((𝑀 − 1)C𝑀) = 0)
6050, 53, 593eqtrd 2769 . . . . . . . . 9 (𝑀 ∈ ℕ → (♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = 0)
61 ovex 7423 . . . . . . . . . 10 ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ∈ V
62 hasheq0 14335 . . . . . . . . . 10 (((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ∈ V → ((♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = 0 ↔ ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅))
6361, 62ax-mp 5 . . . . . . . . 9 ((♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = 0 ↔ ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
6460, 63sylib 218 . . . . . . . 8 (𝑀 ∈ ℕ → ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
6564feq2d 6675 . . . . . . 7 (𝑀 ∈ ℕ → (∅:((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅ ↔ ∅:∅⟶∅))
6647, 65mpbiri 258 . . . . . 6 (𝑀 ∈ ℕ → ∅:((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅)
67 noel 4304 . . . . . . . 8 ¬ 𝑐 ∈ ∅
6867pm2.21i 119 . . . . . . 7 (𝑐 ∈ ∅ → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (∅ “ {𝑐}) → (♯‘𝑥) < (∅‘𝑐)))
6968ad2antrl 728 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝑐 ∈ ∅ ∧ 𝑥 ⊆ (1...(𝑀 − 1)))) → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (∅ “ {𝑐}) → (♯‘𝑥) < (∅‘𝑐)))
701, 43, 44, 45, 46, 66, 69ramlb 16997 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) < (𝑀 Ramsey ∅))
71 ramubcl 16996 . . . . . . 7 (((𝑀 ∈ ℕ0 ∧ ∅ ∈ V ∧ ∅:∅⟶ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ (𝑀 Ramsey ∅) ≤ 𝑀)) → (𝑀 Ramsey ∅) ∈ ℕ0)
722, 4, 6, 2, 42, 71syl32anc 1380 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ∈ ℕ0)
73 nn0lem1lt 12606 . . . . . 6 ((𝑀 ∈ ℕ0 ∧ (𝑀 Ramsey ∅) ∈ ℕ0) → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ (𝑀 − 1) < (𝑀 Ramsey ∅)))
7443, 72, 73syl2anc2 585 . . . . 5 (𝑀 ∈ ℕ → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ (𝑀 − 1) < (𝑀 Ramsey ∅)))
7570, 74mpbird 257 . . . 4 (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 Ramsey ∅))
7675a1i 11 . . 3 (𝑀 ∈ ℕ0 → (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 Ramsey ∅)))
7772nn0ge0d 12513 . . . 4 (𝑀 ∈ ℕ0 → 0 ≤ (𝑀 Ramsey ∅))
78 breq1 5113 . . . 4 (𝑀 = 0 → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ 0 ≤ (𝑀 Ramsey ∅)))
7977, 78syl5ibrcom 247 . . 3 (𝑀 ∈ ℕ0 → (𝑀 = 0 → 𝑀 ≤ (𝑀 Ramsey ∅)))
80 elnn0 12451 . . . 4 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
8180biimpi 216 . . 3 (𝑀 ∈ ℕ0 → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
8276, 79, 81mpjaod 860 . 2 (𝑀 ∈ ℕ0𝑀 ≤ (𝑀 Ramsey ∅))
8372nn0red 12511 . . 3 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ∈ ℝ)
84 nn0re 12458 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
8583, 84letri3d 11323 . 2 (𝑀 ∈ ℕ0 → ((𝑀 Ramsey ∅) = 𝑀 ↔ ((𝑀 Ramsey ∅) ≤ 𝑀𝑀 ≤ (𝑀 Ramsey ∅))))
8642, 82, 85mpbir2and 713 1 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  ccnv 5640  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  cen 8918  cdom 8919  Fincfn 8921  0cc0 11075  1c1 11076   < clt 11215  cle 11216  cmin 11412  cn 12193  0cn0 12449  cz 12536  ...cfz 13475  Ccbc 14274  chash 14302   Ramsey cram 16977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-fac 14246  df-bc 14275  df-hash 14303  df-ram 16979
This theorem is referenced by:  0ramcl  17001  ramcl  17007
  Copyright terms: Public domain W3C validator