MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ram0 Structured version   Visualization version   GIF version

Theorem ram0 16993
Description: The Ramsey number when 𝑅 = ∅. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ram0 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀)

Proof of Theorem ram0
Dummy variables 𝑏 𝑓 𝑐 𝑠 𝑥 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 id 22 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
3 0ex 5262 . . . 4 ∅ ∈ V
43a1i 11 . . 3 (𝑀 ∈ ℕ0 → ∅ ∈ V)
5 f0 6741 . . . 4 ∅:∅⟶ℕ0
65a1i 11 . . 3 (𝑀 ∈ ℕ0 → ∅:∅⟶ℕ0)
7 f00 6742 . . . . 5 (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅ ↔ (𝑓 = ∅ ∧ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅))
8 vex 3451 . . . . . . . . . 10 𝑠 ∈ V
9 simpl 482 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → 𝑀 ∈ ℕ0)
101hashbcval 16973 . . . . . . . . . 10 ((𝑠 ∈ V ∧ 𝑀 ∈ ℕ0) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = {𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀})
118, 9, 10sylancr 587 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = {𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀})
12 hashfz1 14311 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
1312breq1d 5117 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → ((♯‘(1...𝑀)) ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠)))
1413biimpar 477 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (♯‘(1...𝑀)) ≤ (♯‘𝑠))
15 fzfid 13938 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (1...𝑀) ∈ Fin)
16 hashdom 14344 . . . . . . . . . . . . . . 15 (((1...𝑀) ∈ Fin ∧ 𝑠 ∈ V) → ((♯‘(1...𝑀)) ≤ (♯‘𝑠) ↔ (1...𝑀) ≼ 𝑠))
1715, 8, 16sylancl 586 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ((♯‘(1...𝑀)) ≤ (♯‘𝑠) ↔ (1...𝑀) ≼ 𝑠))
1814, 17mpbid 232 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (1...𝑀) ≼ 𝑠)
198domen 8933 . . . . . . . . . . . . 13 ((1...𝑀) ≼ 𝑠 ↔ ∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠))
2018, 19sylib 218 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠))
21 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → 𝑥𝑠)
22 velpw 4568 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
2321, 22sylibr 234 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → 𝑥 ∈ 𝒫 𝑠)
24 hasheni 14313 . . . . . . . . . . . . . . . . 17 ((1...𝑀) ≈ 𝑥 → (♯‘(1...𝑀)) = (♯‘𝑥))
2524ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (♯‘(1...𝑀)) = (♯‘𝑥))
2612ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (♯‘(1...𝑀)) = 𝑀)
2725, 26eqtr3d 2766 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (♯‘𝑥) = 𝑀)
2823, 27jca 511 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀))
2928ex 412 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (((1...𝑀) ≈ 𝑥𝑥𝑠) → (𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀)))
3029eximdv 1917 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠) → ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀)))
3120, 30mpd 15 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀))
32 df-rex 3054 . . . . . . . . . . 11 (∃𝑥 ∈ 𝒫 𝑠(♯‘𝑥) = 𝑀 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀))
3331, 32sylibr 234 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ∃𝑥 ∈ 𝒫 𝑠(♯‘𝑥) = 𝑀)
34 rabn0 4352 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀} ≠ ∅ ↔ ∃𝑥 ∈ 𝒫 𝑠(♯‘𝑥) = 𝑀)
3533, 34sylibr 234 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → {𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀} ≠ ∅)
3611, 35eqnetrd 2992 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ≠ ∅)
3736neneqd 2930 . . . . . . 7 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ¬ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
3837pm2.21d 121 . . . . . 6 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ((𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅ → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
3938adantld 490 . . . . 5 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ((𝑓 = ∅ ∧ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅) → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
407, 39biimtrid 242 . . . 4 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅ → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4140impr 454 . . 3 ((𝑀 ∈ ℕ0 ∧ (𝑀 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅)) → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
421, 2, 4, 6, 2, 41ramub 16984 . 2 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ≤ 𝑀)
43 nnnn0 12449 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
443a1i 11 . . . . . 6 (𝑀 ∈ ℕ → ∅ ∈ V)
455a1i 11 . . . . . 6 (𝑀 ∈ ℕ → ∅:∅⟶ℕ0)
46 nnm1nn0 12483 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
47 f0 6741 . . . . . . 7 ∅:∅⟶∅
48 fzfid 13938 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (1...(𝑀 − 1)) ∈ Fin)
491hashbc2 16977 . . . . . . . . . . 11 (((1...(𝑀 − 1)) ∈ Fin ∧ 𝑀 ∈ ℕ0) → (♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = ((♯‘(1...(𝑀 − 1)))C𝑀))
5048, 43, 49syl2anc 584 . . . . . . . . . 10 (𝑀 ∈ ℕ → (♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = ((♯‘(1...(𝑀 − 1)))C𝑀))
51 hashfz1 14311 . . . . . . . . . . . 12 ((𝑀 − 1) ∈ ℕ0 → (♯‘(1...(𝑀 − 1))) = (𝑀 − 1))
5246, 51syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (♯‘(1...(𝑀 − 1))) = (𝑀 − 1))
5352oveq1d 7402 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((♯‘(1...(𝑀 − 1)))C𝑀) = ((𝑀 − 1)C𝑀))
54 nnz 12550 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
55 nnre 12193 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5655ltm1d 12115 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑀 − 1) < 𝑀)
5756olcd 874 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 < 0 ∨ (𝑀 − 1) < 𝑀))
58 bcval4 14272 . . . . . . . . . . 11 (((𝑀 − 1) ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑀 < 0 ∨ (𝑀 − 1) < 𝑀)) → ((𝑀 − 1)C𝑀) = 0)
5946, 54, 57, 58syl3anc 1373 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((𝑀 − 1)C𝑀) = 0)
6050, 53, 593eqtrd 2768 . . . . . . . . 9 (𝑀 ∈ ℕ → (♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = 0)
61 ovex 7420 . . . . . . . . . 10 ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ∈ V
62 hasheq0 14328 . . . . . . . . . 10 (((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ∈ V → ((♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = 0 ↔ ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅))
6361, 62ax-mp 5 . . . . . . . . 9 ((♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = 0 ↔ ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
6460, 63sylib 218 . . . . . . . 8 (𝑀 ∈ ℕ → ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
6564feq2d 6672 . . . . . . 7 (𝑀 ∈ ℕ → (∅:((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅ ↔ ∅:∅⟶∅))
6647, 65mpbiri 258 . . . . . 6 (𝑀 ∈ ℕ → ∅:((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅)
67 noel 4301 . . . . . . . 8 ¬ 𝑐 ∈ ∅
6867pm2.21i 119 . . . . . . 7 (𝑐 ∈ ∅ → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (∅ “ {𝑐}) → (♯‘𝑥) < (∅‘𝑐)))
6968ad2antrl 728 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝑐 ∈ ∅ ∧ 𝑥 ⊆ (1...(𝑀 − 1)))) → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (∅ “ {𝑐}) → (♯‘𝑥) < (∅‘𝑐)))
701, 43, 44, 45, 46, 66, 69ramlb 16990 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) < (𝑀 Ramsey ∅))
71 ramubcl 16989 . . . . . . 7 (((𝑀 ∈ ℕ0 ∧ ∅ ∈ V ∧ ∅:∅⟶ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ (𝑀 Ramsey ∅) ≤ 𝑀)) → (𝑀 Ramsey ∅) ∈ ℕ0)
722, 4, 6, 2, 42, 71syl32anc 1380 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ∈ ℕ0)
73 nn0lem1lt 12599 . . . . . 6 ((𝑀 ∈ ℕ0 ∧ (𝑀 Ramsey ∅) ∈ ℕ0) → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ (𝑀 − 1) < (𝑀 Ramsey ∅)))
7443, 72, 73syl2anc2 585 . . . . 5 (𝑀 ∈ ℕ → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ (𝑀 − 1) < (𝑀 Ramsey ∅)))
7570, 74mpbird 257 . . . 4 (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 Ramsey ∅))
7675a1i 11 . . 3 (𝑀 ∈ ℕ0 → (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 Ramsey ∅)))
7772nn0ge0d 12506 . . . 4 (𝑀 ∈ ℕ0 → 0 ≤ (𝑀 Ramsey ∅))
78 breq1 5110 . . . 4 (𝑀 = 0 → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ 0 ≤ (𝑀 Ramsey ∅)))
7977, 78syl5ibrcom 247 . . 3 (𝑀 ∈ ℕ0 → (𝑀 = 0 → 𝑀 ≤ (𝑀 Ramsey ∅)))
80 elnn0 12444 . . . 4 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
8180biimpi 216 . . 3 (𝑀 ∈ ℕ0 → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
8276, 79, 81mpjaod 860 . 2 (𝑀 ∈ ℕ0𝑀 ≤ (𝑀 Ramsey ∅))
8372nn0red 12504 . . 3 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ∈ ℝ)
84 nn0re 12451 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
8583, 84letri3d 11316 . 2 (𝑀 ∈ ℕ0 → ((𝑀 Ramsey ∅) = 𝑀 ↔ ((𝑀 Ramsey ∅) ≤ 𝑀𝑀 ≤ (𝑀 Ramsey ∅))))
8642, 82, 85mpbir2and 713 1 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  ccnv 5637  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  cen 8915  cdom 8916  Fincfn 8918  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  ...cfz 13468  Ccbc 14267  chash 14295   Ramsey cram 16970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-fac 14239  df-bc 14268  df-hash 14296  df-ram 16972
This theorem is referenced by:  0ramcl  16994  ramcl  17000
  Copyright terms: Public domain W3C validator