MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ram0 Structured version   Visualization version   GIF version

Theorem ram0 16723
Description: The Ramsey number when 𝑅 = ∅. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ram0 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀)

Proof of Theorem ram0
Dummy variables 𝑏 𝑓 𝑐 𝑠 𝑥 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 id 22 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
3 0ex 5231 . . . 4 ∅ ∈ V
43a1i 11 . . 3 (𝑀 ∈ ℕ0 → ∅ ∈ V)
5 f0 6655 . . . 4 ∅:∅⟶ℕ0
65a1i 11 . . 3 (𝑀 ∈ ℕ0 → ∅:∅⟶ℕ0)
7 f00 6656 . . . . 5 (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅ ↔ (𝑓 = ∅ ∧ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅))
8 vex 3436 . . . . . . . . . 10 𝑠 ∈ V
9 simpl 483 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → 𝑀 ∈ ℕ0)
101hashbcval 16703 . . . . . . . . . 10 ((𝑠 ∈ V ∧ 𝑀 ∈ ℕ0) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = {𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀})
118, 9, 10sylancr 587 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = {𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀})
12 hashfz1 14060 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
1312breq1d 5084 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → ((♯‘(1...𝑀)) ≤ (♯‘𝑠) ↔ 𝑀 ≤ (♯‘𝑠)))
1413biimpar 478 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (♯‘(1...𝑀)) ≤ (♯‘𝑠))
15 fzfid 13693 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (1...𝑀) ∈ Fin)
16 hashdom 14094 . . . . . . . . . . . . . . 15 (((1...𝑀) ∈ Fin ∧ 𝑠 ∈ V) → ((♯‘(1...𝑀)) ≤ (♯‘𝑠) ↔ (1...𝑀) ≼ 𝑠))
1715, 8, 16sylancl 586 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ((♯‘(1...𝑀)) ≤ (♯‘𝑠) ↔ (1...𝑀) ≼ 𝑠))
1814, 17mpbid 231 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (1...𝑀) ≼ 𝑠)
198domen 8751 . . . . . . . . . . . . 13 ((1...𝑀) ≼ 𝑠 ↔ ∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠))
2018, 19sylib 217 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠))
21 simprr 770 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → 𝑥𝑠)
22 velpw 4538 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
2321, 22sylibr 233 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → 𝑥 ∈ 𝒫 𝑠)
24 hasheni 14062 . . . . . . . . . . . . . . . . 17 ((1...𝑀) ≈ 𝑥 → (♯‘(1...𝑀)) = (♯‘𝑥))
2524ad2antrl 725 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (♯‘(1...𝑀)) = (♯‘𝑥))
2612ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (♯‘(1...𝑀)) = 𝑀)
2725, 26eqtr3d 2780 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (♯‘𝑥) = 𝑀)
2823, 27jca 512 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀))
2928ex 413 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (((1...𝑀) ≈ 𝑥𝑥𝑠) → (𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀)))
3029eximdv 1920 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠) → ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀)))
3120, 30mpd 15 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀))
32 df-rex 3070 . . . . . . . . . . 11 (∃𝑥 ∈ 𝒫 𝑠(♯‘𝑥) = 𝑀 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (♯‘𝑥) = 𝑀))
3331, 32sylibr 233 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ∃𝑥 ∈ 𝒫 𝑠(♯‘𝑥) = 𝑀)
34 rabn0 4319 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀} ≠ ∅ ↔ ∃𝑥 ∈ 𝒫 𝑠(♯‘𝑥) = 𝑀)
3533, 34sylibr 233 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → {𝑥 ∈ 𝒫 𝑠 ∣ (♯‘𝑥) = 𝑀} ≠ ∅)
3611, 35eqnetrd 3011 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ≠ ∅)
3736neneqd 2948 . . . . . . 7 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ¬ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
3837pm2.21d 121 . . . . . 6 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ((𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅ → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
3938adantld 491 . . . . 5 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → ((𝑓 = ∅ ∧ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅) → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
407, 39syl5bi 241 . . . 4 ((𝑀 ∈ ℕ0𝑀 ≤ (♯‘𝑠)) → (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅ → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4140impr 455 . . 3 ((𝑀 ∈ ℕ0 ∧ (𝑀 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅)) → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
421, 2, 4, 6, 2, 41ramub 16714 . 2 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ≤ 𝑀)
43 nnnn0 12240 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
443a1i 11 . . . . . 6 (𝑀 ∈ ℕ → ∅ ∈ V)
455a1i 11 . . . . . 6 (𝑀 ∈ ℕ → ∅:∅⟶ℕ0)
46 nnm1nn0 12274 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
47 f0 6655 . . . . . . 7 ∅:∅⟶∅
48 fzfid 13693 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (1...(𝑀 − 1)) ∈ Fin)
491hashbc2 16707 . . . . . . . . . . 11 (((1...(𝑀 − 1)) ∈ Fin ∧ 𝑀 ∈ ℕ0) → (♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = ((♯‘(1...(𝑀 − 1)))C𝑀))
5048, 43, 49syl2anc 584 . . . . . . . . . 10 (𝑀 ∈ ℕ → (♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = ((♯‘(1...(𝑀 − 1)))C𝑀))
51 hashfz1 14060 . . . . . . . . . . . 12 ((𝑀 − 1) ∈ ℕ0 → (♯‘(1...(𝑀 − 1))) = (𝑀 − 1))
5246, 51syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (♯‘(1...(𝑀 − 1))) = (𝑀 − 1))
5352oveq1d 7290 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((♯‘(1...(𝑀 − 1)))C𝑀) = ((𝑀 − 1)C𝑀))
54 nnz 12342 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
55 nnre 11980 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5655ltm1d 11907 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑀 − 1) < 𝑀)
5756olcd 871 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 < 0 ∨ (𝑀 − 1) < 𝑀))
58 bcval4 14021 . . . . . . . . . . 11 (((𝑀 − 1) ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑀 < 0 ∨ (𝑀 − 1) < 𝑀)) → ((𝑀 − 1)C𝑀) = 0)
5946, 54, 57, 58syl3anc 1370 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((𝑀 − 1)C𝑀) = 0)
6050, 53, 593eqtrd 2782 . . . . . . . . 9 (𝑀 ∈ ℕ → (♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = 0)
61 ovex 7308 . . . . . . . . . 10 ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ∈ V
62 hasheq0 14078 . . . . . . . . . 10 (((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ∈ V → ((♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = 0 ↔ ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅))
6361, 62ax-mp 5 . . . . . . . . 9 ((♯‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) = 0 ↔ ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
6460, 63sylib 217 . . . . . . . 8 (𝑀 ∈ ℕ → ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
6564feq2d 6586 . . . . . . 7 (𝑀 ∈ ℕ → (∅:((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅ ↔ ∅:∅⟶∅))
6647, 65mpbiri 257 . . . . . 6 (𝑀 ∈ ℕ → ∅:((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶∅)
67 noel 4264 . . . . . . . 8 ¬ 𝑐 ∈ ∅
6867pm2.21i 119 . . . . . . 7 (𝑐 ∈ ∅ → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (∅ “ {𝑐}) → (♯‘𝑥) < (∅‘𝑐)))
6968ad2antrl 725 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝑐 ∈ ∅ ∧ 𝑥 ⊆ (1...(𝑀 − 1)))) → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (∅ “ {𝑐}) → (♯‘𝑥) < (∅‘𝑐)))
701, 43, 44, 45, 46, 66, 69ramlb 16720 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) < (𝑀 Ramsey ∅))
71 ramubcl 16719 . . . . . . 7 (((𝑀 ∈ ℕ0 ∧ ∅ ∈ V ∧ ∅:∅⟶ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ (𝑀 Ramsey ∅) ≤ 𝑀)) → (𝑀 Ramsey ∅) ∈ ℕ0)
722, 4, 6, 2, 42, 71syl32anc 1377 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ∈ ℕ0)
73 nn0lem1lt 12385 . . . . . 6 ((𝑀 ∈ ℕ0 ∧ (𝑀 Ramsey ∅) ∈ ℕ0) → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ (𝑀 − 1) < (𝑀 Ramsey ∅)))
7443, 72, 73syl2anc2 585 . . . . 5 (𝑀 ∈ ℕ → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ (𝑀 − 1) < (𝑀 Ramsey ∅)))
7570, 74mpbird 256 . . . 4 (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 Ramsey ∅))
7675a1i 11 . . 3 (𝑀 ∈ ℕ0 → (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 Ramsey ∅)))
7772nn0ge0d 12296 . . . 4 (𝑀 ∈ ℕ0 → 0 ≤ (𝑀 Ramsey ∅))
78 breq1 5077 . . . 4 (𝑀 = 0 → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ 0 ≤ (𝑀 Ramsey ∅)))
7977, 78syl5ibrcom 246 . . 3 (𝑀 ∈ ℕ0 → (𝑀 = 0 → 𝑀 ≤ (𝑀 Ramsey ∅)))
80 elnn0 12235 . . . 4 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
8180biimpi 215 . . 3 (𝑀 ∈ ℕ0 → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
8276, 79, 81mpjaod 857 . 2 (𝑀 ∈ ℕ0𝑀 ≤ (𝑀 Ramsey ∅))
8372nn0red 12294 . . 3 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ∈ ℝ)
84 nn0re 12242 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
8583, 84letri3d 11117 . 2 (𝑀 ∈ ℕ0 → ((𝑀 Ramsey ∅) = 𝑀 ↔ ((𝑀 Ramsey ∅) ≤ 𝑀𝑀 ≤ (𝑀 Ramsey ∅))))
8642, 82, 85mpbir2and 710 1 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  ccnv 5588  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  cen 8730  cdom 8731  Fincfn 8733  0cc0 10871  1c1 10872   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  Ccbc 14016  chash 14044   Ramsey cram 16700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-fac 13988  df-bc 14017  df-hash 14045  df-ram 16702
This theorem is referenced by:  0ramcl  16724  ramcl  16730
  Copyright terms: Public domain W3C validator