![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domeng | Structured version Visualization version GIF version |
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
domeng | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 ≼ 𝑦 ↔ 𝐴 ≼ 𝐵)) | |
2 | sseq2 4022 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐵)) | |
3 | 2 | anbi2d 630 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦) ↔ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
4 | 3 | exbidv 1919 | . 2 ⊢ (𝑦 = 𝐵 → (∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦) ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
5 | vex 3482 | . . 3 ⊢ 𝑦 ∈ V | |
6 | 5 | domen 9001 | . 2 ⊢ (𝐴 ≼ 𝑦 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦)) |
7 | 1, 4, 6 | vtoclbg 3557 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ⊆ wss 3963 class class class wbr 5148 ≈ cen 8981 ≼ cdom 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-en 8985 df-dom 8986 |
This theorem is referenced by: undomOLD 9099 mapdom1 9181 mapdom2 9187 domfi 9227 isfinite2 9332 unxpwdom 9627 djuinf 10227 domfin4 10349 pwfseq 10702 grudomon 10855 ufldom 23986 erdsze2lem1 35188 |
Copyright terms: Public domain | W3C validator |