| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domeng | Structured version Visualization version GIF version | ||
| Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| domeng | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5127 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 ≼ 𝑦 ↔ 𝐴 ≼ 𝐵)) | |
| 2 | sseq2 3990 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐵)) | |
| 3 | 2 | anbi2d 630 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦) ↔ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| 4 | 3 | exbidv 1920 | . 2 ⊢ (𝑦 = 𝐵 → (∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦) ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| 5 | vex 3467 | . . 3 ⊢ 𝑦 ∈ V | |
| 6 | 5 | domen 8984 | . 2 ⊢ (𝐴 ≼ 𝑦 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦)) |
| 7 | 1, 4, 6 | vtoclbg 3540 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ⊆ wss 3931 class class class wbr 5123 ≈ cen 8964 ≼ cdom 8965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-en 8968 df-dom 8969 |
| This theorem is referenced by: undomOLD 9082 mapdom1 9164 mapdom2 9170 domfi 9211 isfinite2 9316 unxpwdom 9611 djuinf 10211 domfin4 10333 pwfseq 10686 grudomon 10839 ufldom 23917 erdsze2lem1 35183 |
| Copyright terms: Public domain | W3C validator |