| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domeng | Structured version Visualization version GIF version | ||
| Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| domeng | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5095 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 ≼ 𝑦 ↔ 𝐴 ≼ 𝐵)) | |
| 2 | sseq2 3961 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐵)) | |
| 3 | 2 | anbi2d 630 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦) ↔ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| 4 | 3 | exbidv 1922 | . 2 ⊢ (𝑦 = 𝐵 → (∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦) ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| 5 | vex 3440 | . . 3 ⊢ 𝑦 ∈ V | |
| 6 | 5 | domen 8884 | . 2 ⊢ (𝐴 ≼ 𝑦 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦)) |
| 7 | 1, 4, 6 | vtoclbg 3512 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 ≈ cen 8866 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-en 8870 df-dom 8871 |
| This theorem is referenced by: mapdom1 9055 mapdom2 9061 domfi 9098 isfinite2 9182 unxpwdom 9475 djuinf 10077 domfin4 10199 pwfseq 10552 grudomon 10705 ufldom 23875 erdsze2lem1 35235 |
| Copyright terms: Public domain | W3C validator |