![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domeng | Structured version Visualization version GIF version |
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
domeng | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4966 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 ≼ 𝑦 ↔ 𝐴 ≼ 𝐵)) | |
2 | sseq2 3914 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐵)) | |
3 | 2 | anbi2d 628 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦) ↔ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
4 | 3 | exbidv 1899 | . 2 ⊢ (𝑦 = 𝐵 → (∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦) ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
5 | vex 3440 | . . 3 ⊢ 𝑦 ∈ V | |
6 | 5 | domen 8370 | . 2 ⊢ (𝐴 ≼ 𝑦 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝑦)) |
7 | 1, 4, 6 | vtoclbg 3511 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∃wex 1761 ∈ wcel 2081 ⊆ wss 3859 class class class wbr 4962 ≈ cen 8354 ≼ cdom 8355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-xp 5449 df-rel 5450 df-cnv 5451 df-dm 5453 df-rn 5454 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-en 8358 df-dom 8359 |
This theorem is referenced by: undom 8452 mapdom1 8529 mapdom2 8535 domfi 8585 isfinite2 8622 unxpwdom 8899 djuinf 9460 domfin4 9579 pwfseq 9932 grudomon 10085 ufldom 22254 erdsze2lem1 32059 |
Copyright terms: Public domain | W3C validator |