MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domeng Structured version   Visualization version   GIF version

Theorem domeng 9002
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
domeng (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem domeng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5152 . 2 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
2 sseq2 4022 . . . 4 (𝑦 = 𝐵 → (𝑥𝑦𝑥𝐵))
32anbi2d 630 . . 3 (𝑦 = 𝐵 → ((𝐴𝑥𝑥𝑦) ↔ (𝐴𝑥𝑥𝐵)))
43exbidv 1919 . 2 (𝑦 = 𝐵 → (∃𝑥(𝐴𝑥𝑥𝑦) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
5 vex 3482 . . 3 𝑦 ∈ V
65domen 9001 . 2 (𝐴𝑦 ↔ ∃𝑥(𝐴𝑥𝑥𝑦))
71, 4, 6vtoclbg 3557 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wss 3963   class class class wbr 5148  cen 8981  cdom 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-en 8985  df-dom 8986
This theorem is referenced by:  undomOLD  9099  mapdom1  9181  mapdom2  9187  domfi  9227  isfinite2  9332  unxpwdom  9627  djuinf  10227  domfin4  10349  pwfseq  10702  grudomon  10855  ufldom  23986  erdsze2lem1  35188
  Copyright terms: Public domain W3C validator