| Step | Hyp | Ref
| Expression |
| 1 | | rami.c |
. 2
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
| 2 | | rami.m |
. 2
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 3 | | rami.r |
. 2
⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| 4 | | rami.f |
. 2
⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) |
| 5 | | ramub2.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 6 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ∈
ℕ0) |
| 7 | | hashfz1 14385 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
| 8 | 6, 7 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (♯‘(1...𝑁)) = 𝑁) |
| 9 | | simprl 771 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ≤ (♯‘𝑡)) |
| 10 | 8, 9 | eqbrtrd 5165 |
. . . . 5
⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (♯‘(1...𝑁)) ≤ (♯‘𝑡)) |
| 11 | | fzfid 14014 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ∈ Fin) |
| 12 | | vex 3484 |
. . . . . 6
⊢ 𝑡 ∈ V |
| 13 | | hashdom 14418 |
. . . . . 6
⊢
(((1...𝑁) ∈ Fin
∧ 𝑡 ∈ V) →
((♯‘(1...𝑁))
≤ (♯‘𝑡)
↔ (1...𝑁) ≼
𝑡)) |
| 14 | 11, 12, 13 | sylancl 586 |
. . . . 5
⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ((♯‘(1...𝑁)) ≤ (♯‘𝑡) ↔ (1...𝑁) ≼ 𝑡)) |
| 15 | 10, 14 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ≼ 𝑡) |
| 16 | 12 | domen 9002 |
. . . 4
⊢
((1...𝑁) ≼
𝑡 ↔ ∃𝑠((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) |
| 17 | 15, 16 | sylib 218 |
. . 3
⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑠((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) |
| 18 | | simpll 767 |
. . . . 5
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → 𝜑) |
| 19 | | ensym 9043 |
. . . . . . . 8
⊢
((1...𝑁) ≈
𝑠 → 𝑠 ≈ (1...𝑁)) |
| 20 | 19 | ad2antrl 728 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → 𝑠 ≈ (1...𝑁)) |
| 21 | | hasheni 14387 |
. . . . . . 7
⊢ (𝑠 ≈ (1...𝑁) → (♯‘𝑠) = (♯‘(1...𝑁))) |
| 22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → (♯‘𝑠) = (♯‘(1...𝑁))) |
| 23 | 5 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → 𝑁 ∈
ℕ0) |
| 24 | 23, 7 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → (♯‘(1...𝑁)) = 𝑁) |
| 25 | 22, 24 | eqtrd 2777 |
. . . . 5
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → (♯‘𝑠) = 𝑁) |
| 26 | | simplrr 778 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → 𝑔:(𝑡𝐶𝑀)⟶𝑅) |
| 27 | | simprr 773 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → 𝑠 ⊆ 𝑡) |
| 28 | 2 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → 𝑀 ∈
ℕ0) |
| 29 | 1 | hashbcss 17042 |
. . . . . . 7
⊢ ((𝑡 ∈ V ∧ 𝑠 ⊆ 𝑡 ∧ 𝑀 ∈ ℕ0) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀)) |
| 30 | 12, 27, 28, 29 | mp3an2i 1468 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀)) |
| 31 | 26, 30 | fssresd 6775 |
. . . . 5
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅) |
| 32 | | vex 3484 |
. . . . . . 7
⊢ 𝑔 ∈ V |
| 33 | 32 | resex 6047 |
. . . . . 6
⊢ (𝑔 ↾ (𝑠𝐶𝑀)) ∈ V |
| 34 | | feq1 6716 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓:(𝑠𝐶𝑀)⟶𝑅 ↔ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) |
| 35 | 34 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((♯‘𝑠) = 𝑁 ∧ 𝑓:(𝑠𝐶𝑀)⟶𝑅) ↔ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))) |
| 36 | 35 | anbi2d 630 |
. . . . . . 7
⊢ (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ 𝑓:(𝑠𝐶𝑀)⟶𝑅)) ↔ (𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)))) |
| 37 | | cnveq 5884 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ◡𝑓 = ◡(𝑔 ↾ (𝑠𝐶𝑀))) |
| 38 | 37 | imaeq1d 6077 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (◡𝑓 “ {𝑐}) = (◡(𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐})) |
| 39 | | cnvresima 6250 |
. . . . . . . . . . 11
⊢ (◡(𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}) = ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) |
| 40 | 38, 39 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (◡𝑓 “ {𝑐}) = ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) |
| 41 | 40 | sseq2d 4016 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}) ↔ (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))) |
| 42 | 41 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})) ↔ ((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))) |
| 43 | 42 | 2rexbidv 3222 |
. . . . . . 7
⊢ (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})) ↔ ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))) |
| 44 | 36, 43 | imbi12d 344 |
. . . . . 6
⊢ (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ 𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) ↔ ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))) |
| 45 | | ramub2.i |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ 𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) |
| 46 | 33, 44, 45 | vtocl 3558 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))) |
| 47 | 18, 25, 31, 46 | syl12anc 837 |
. . . 4
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))) |
| 48 | | sstr 3992 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑡) → 𝑥 ⊆ 𝑡) |
| 49 | 48 | expcom 413 |
. . . . . . . . 9
⊢ (𝑠 ⊆ 𝑡 → (𝑥 ⊆ 𝑠 → 𝑥 ⊆ 𝑡)) |
| 50 | 49 | ad2antll 729 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → (𝑥 ⊆ 𝑠 → 𝑥 ⊆ 𝑡)) |
| 51 | | velpw 4605 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝑠 ↔ 𝑥 ⊆ 𝑠) |
| 52 | | velpw 4605 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝑡 ↔ 𝑥 ⊆ 𝑡) |
| 53 | 50, 51, 52 | 3imtr4g 296 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → (𝑥 ∈ 𝒫 𝑠 → 𝑥 ∈ 𝒫 𝑡)) |
| 54 | | id 22 |
. . . . . . . . . 10
⊢ ((𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) |
| 55 | | inss1 4237 |
. . . . . . . . . 10
⊢ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) ⊆ (◡𝑔 “ {𝑐}) |
| 56 | 54, 55 | sstrdi 3996 |
. . . . . . . . 9
⊢ ((𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (◡𝑔 “ {𝑐})) |
| 57 | 56 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → ((𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (◡𝑔 “ {𝑐}))) |
| 58 | 57 | anim2d 612 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → (((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑔 “ {𝑐})))) |
| 59 | 53, 58 | anim12d 609 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → ((𝑥 ∈ 𝒫 𝑠 ∧ ((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))) → (𝑥 ∈ 𝒫 𝑡 ∧ ((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑔 “ {𝑐}))))) |
| 60 | 59 | reximdv2 3164 |
. . . . 5
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → (∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑥 ∈ 𝒫 𝑡((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑔 “ {𝑐})))) |
| 61 | 60 | reximdv 3170 |
. . . 4
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → (∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((◡𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑡((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑔 “ {𝑐})))) |
| 62 | 47, 61 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑡((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑔 “ {𝑐}))) |
| 63 | 17, 62 | exlimddv 1935 |
. 2
⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑡((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑔 “ {𝑐}))) |
| 64 | 1, 2, 3, 4, 5, 63 | ramub 17051 |
1
⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁) |