MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub2 Structured version   Visualization version   GIF version

Theorem ramub2 16930
Description: It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
rami.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
rami.m (𝜑𝑀 ∈ ℕ0)
rami.r (𝜑𝑅𝑉)
rami.f (𝜑𝐹:𝑅⟶ℕ0)
ramub2.n (𝜑𝑁 ∈ ℕ0)
ramub2.i ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
Assertion
Ref Expression
ramub2 (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁)
Distinct variable groups:   𝑓,𝑐,𝑠,𝑥,𝐶   𝜑,𝑐,𝑓,𝑠,𝑥   𝐹,𝑐,𝑓,𝑠,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑠,𝑥   𝑁,𝑎,𝑐,𝑓,𝑖,𝑠,𝑥   𝑉,𝑐,𝑓,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramub2
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rami.c . 2 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 rami.m . 2 (𝜑𝑀 ∈ ℕ0)
3 rami.r . 2 (𝜑𝑅𝑉)
4 rami.f . 2 (𝜑𝐹:𝑅⟶ℕ0)
5 ramub2.n . 2 (𝜑𝑁 ∈ ℕ0)
65adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ∈ ℕ0)
7 hashfz1 14257 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
86, 7syl 17 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (♯‘(1...𝑁)) = 𝑁)
9 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ≤ (♯‘𝑡))
108, 9eqbrtrd 5117 . . . . 5 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (♯‘(1...𝑁)) ≤ (♯‘𝑡))
11 fzfid 13884 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ∈ Fin)
12 vex 3441 . . . . . 6 𝑡 ∈ V
13 hashdom 14290 . . . . . 6 (((1...𝑁) ∈ Fin ∧ 𝑡 ∈ V) → ((♯‘(1...𝑁)) ≤ (♯‘𝑡) ↔ (1...𝑁) ≼ 𝑡))
1411, 12, 13sylancl 586 . . . . 5 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ((♯‘(1...𝑁)) ≤ (♯‘𝑡) ↔ (1...𝑁) ≼ 𝑡))
1510, 14mpbid 232 . . . 4 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ≼ 𝑡)
1612domen 8892 . . . 4 ((1...𝑁) ≼ 𝑡 ↔ ∃𝑠((1...𝑁) ≈ 𝑠𝑠𝑡))
1715, 16sylib 218 . . 3 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑠((1...𝑁) ≈ 𝑠𝑠𝑡))
18 simpll 766 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝜑)
19 ensym 8934 . . . . . . . 8 ((1...𝑁) ≈ 𝑠𝑠 ≈ (1...𝑁))
2019ad2antrl 728 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑠 ≈ (1...𝑁))
21 hasheni 14259 . . . . . . 7 (𝑠 ≈ (1...𝑁) → (♯‘𝑠) = (♯‘(1...𝑁)))
2220, 21syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘𝑠) = (♯‘(1...𝑁)))
235ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑁 ∈ ℕ0)
2423, 7syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘(1...𝑁)) = 𝑁)
2522, 24eqtrd 2768 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘𝑠) = 𝑁)
26 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑔:(𝑡𝐶𝑀)⟶𝑅)
27 simprr 772 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑠𝑡)
282ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑀 ∈ ℕ0)
291hashbcss 16920 . . . . . . 7 ((𝑡 ∈ V ∧ 𝑠𝑡𝑀 ∈ ℕ0) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀))
3012, 27, 28, 29mp3an2i 1468 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀))
3126, 30fssresd 6697 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)
32 vex 3441 . . . . . . 7 𝑔 ∈ V
3332resex 5984 . . . . . 6 (𝑔 ↾ (𝑠𝐶𝑀)) ∈ V
34 feq1 6636 . . . . . . . . 9 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓:(𝑠𝐶𝑀)⟶𝑅 ↔ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))
3534anbi2d 630 . . . . . . . 8 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅) ↔ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)))
3635anbi2d 630 . . . . . . 7 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) ↔ (𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))))
37 cnveq 5819 . . . . . . . . . . . 12 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → 𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)))
3837imaeq1d 6014 . . . . . . . . . . 11 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓 “ {𝑐}) = ((𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}))
39 cnvresima 6184 . . . . . . . . . . 11 ((𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}) = ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))
4038, 39eqtrdi 2784 . . . . . . . . . 10 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓 “ {𝑐}) = ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))
4140sseq2d 3963 . . . . . . . . 9 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
4241anbi2d 630 . . . . . . . 8 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))
43422rexbidv 3198 . . . . . . 7 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))
4436, 43imbi12d 344 . . . . . 6 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))))
45 ramub2.i . . . . . 6 ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
4633, 44, 45vtocl 3512 . . . . 5 ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
4718, 25, 31, 46syl12anc 836 . . . 4 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
48 sstr 3939 . . . . . . . . . 10 ((𝑥𝑠𝑠𝑡) → 𝑥𝑡)
4948expcom 413 . . . . . . . . 9 (𝑠𝑡 → (𝑥𝑠𝑥𝑡))
5049ad2antll 729 . . . . . . . 8 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑥𝑠𝑥𝑡))
51 velpw 4556 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
52 velpw 4556 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑡𝑥𝑡)
5350, 51, 523imtr4g 296 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑥 ∈ 𝒫 𝑠𝑥 ∈ 𝒫 𝑡))
54 id 22 . . . . . . . . . 10 ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))
55 inss1 4186 . . . . . . . . . 10 ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) ⊆ (𝑔 “ {𝑐})
5654, 55sstrdi 3943 . . . . . . . . 9 ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))
5756a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
5857anim2d 612 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
5953, 58anim12d 609 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ((𝑥 ∈ 𝒫 𝑠 ∧ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))) → (𝑥 ∈ 𝒫 𝑡 ∧ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))))
6059reximdv2 3143 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6160reximdv 3148 . . . 4 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6247, 61mpd 15 . . 3 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
6317, 62exlimddv 1936 . 2 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
641, 2, 3, 4, 5, 63ramub 16929 1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wrex 3057  {crab 3396  Vcvv 3437  cin 3897  wss 3898  𝒫 cpw 4551  {csn 4577   class class class wbr 5095  ccnv 5620  cres 5623  cima 5624  wf 6484  cfv 6488  (class class class)co 7354  cmpo 7356  cen 8874  cdom 8875  Fincfn 8877  1c1 11016  cle 11156  0cn0 12390  ...cfz 13411  chash 14241   Ramsey cram 16915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-oadd 8397  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-xnn0 12464  df-z 12478  df-uz 12741  df-fz 13412  df-hash 14242  df-ram 16917
This theorem is referenced by:  ramub1  16944
  Copyright terms: Public domain W3C validator