MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub2 Structured version   Visualization version   GIF version

Theorem ramub2 16340
Description: It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
rami.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
rami.m (𝜑𝑀 ∈ ℕ0)
rami.r (𝜑𝑅𝑉)
rami.f (𝜑𝐹:𝑅⟶ℕ0)
ramub2.n (𝜑𝑁 ∈ ℕ0)
ramub2.i ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
Assertion
Ref Expression
ramub2 (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁)
Distinct variable groups:   𝑓,𝑐,𝑠,𝑥,𝐶   𝜑,𝑐,𝑓,𝑠,𝑥   𝐹,𝑐,𝑓,𝑠,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑠,𝑥   𝑁,𝑎,𝑐,𝑓,𝑖,𝑠,𝑥   𝑉,𝑐,𝑓,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramub2
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rami.c . 2 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 rami.m . 2 (𝜑𝑀 ∈ ℕ0)
3 rami.r . 2 (𝜑𝑅𝑉)
4 rami.f . 2 (𝜑𝐹:𝑅⟶ℕ0)
5 ramub2.n . 2 (𝜑𝑁 ∈ ℕ0)
65adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ∈ ℕ0)
7 hashfz1 13702 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
86, 7syl 17 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (♯‘(1...𝑁)) = 𝑁)
9 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ≤ (♯‘𝑡))
108, 9eqbrtrd 5052 . . . . 5 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (♯‘(1...𝑁)) ≤ (♯‘𝑡))
11 fzfid 13336 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ∈ Fin)
12 vex 3444 . . . . . 6 𝑡 ∈ V
13 hashdom 13736 . . . . . 6 (((1...𝑁) ∈ Fin ∧ 𝑡 ∈ V) → ((♯‘(1...𝑁)) ≤ (♯‘𝑡) ↔ (1...𝑁) ≼ 𝑡))
1411, 12, 13sylancl 589 . . . . 5 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ((♯‘(1...𝑁)) ≤ (♯‘𝑡) ↔ (1...𝑁) ≼ 𝑡))
1510, 14mpbid 235 . . . 4 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ≼ 𝑡)
1612domen 8505 . . . 4 ((1...𝑁) ≼ 𝑡 ↔ ∃𝑠((1...𝑁) ≈ 𝑠𝑠𝑡))
1715, 16sylib 221 . . 3 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑠((1...𝑁) ≈ 𝑠𝑠𝑡))
18 simpll 766 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝜑)
19 ensym 8541 . . . . . . . 8 ((1...𝑁) ≈ 𝑠𝑠 ≈ (1...𝑁))
2019ad2antrl 727 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑠 ≈ (1...𝑁))
21 hasheni 13704 . . . . . . 7 (𝑠 ≈ (1...𝑁) → (♯‘𝑠) = (♯‘(1...𝑁)))
2220, 21syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘𝑠) = (♯‘(1...𝑁)))
235ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑁 ∈ ℕ0)
2423, 7syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘(1...𝑁)) = 𝑁)
2522, 24eqtrd 2833 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘𝑠) = 𝑁)
26 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑔:(𝑡𝐶𝑀)⟶𝑅)
27 simprr 772 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑠𝑡)
282ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑀 ∈ ℕ0)
291hashbcss 16330 . . . . . . 7 ((𝑡 ∈ V ∧ 𝑠𝑡𝑀 ∈ ℕ0) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀))
3012, 27, 28, 29mp3an2i 1463 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀))
3126, 30fssresd 6519 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)
32 vex 3444 . . . . . . 7 𝑔 ∈ V
3332resex 5866 . . . . . 6 (𝑔 ↾ (𝑠𝐶𝑀)) ∈ V
34 feq1 6468 . . . . . . . . 9 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓:(𝑠𝐶𝑀)⟶𝑅 ↔ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))
3534anbi2d 631 . . . . . . . 8 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅) ↔ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)))
3635anbi2d 631 . . . . . . 7 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) ↔ (𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))))
37 cnveq 5708 . . . . . . . . . . . 12 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → 𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)))
3837imaeq1d 5895 . . . . . . . . . . 11 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓 “ {𝑐}) = ((𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}))
39 cnvresima 6054 . . . . . . . . . . 11 ((𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}) = ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))
4038, 39eqtrdi 2849 . . . . . . . . . 10 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓 “ {𝑐}) = ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))
4140sseq2d 3947 . . . . . . . . 9 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
4241anbi2d 631 . . . . . . . 8 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))
43422rexbidv 3259 . . . . . . 7 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))
4436, 43imbi12d 348 . . . . . 6 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))))
45 ramub2.i . . . . . 6 ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
4633, 44, 45vtocl 3507 . . . . 5 ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
4718, 25, 31, 46syl12anc 835 . . . 4 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
48 sstr 3923 . . . . . . . . . 10 ((𝑥𝑠𝑠𝑡) → 𝑥𝑡)
4948expcom 417 . . . . . . . . 9 (𝑠𝑡 → (𝑥𝑠𝑥𝑡))
5049ad2antll 728 . . . . . . . 8 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑥𝑠𝑥𝑡))
51 velpw 4502 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
52 velpw 4502 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑡𝑥𝑡)
5350, 51, 523imtr4g 299 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑥 ∈ 𝒫 𝑠𝑥 ∈ 𝒫 𝑡))
54 id 22 . . . . . . . . . 10 ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))
55 inss1 4155 . . . . . . . . . 10 ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) ⊆ (𝑔 “ {𝑐})
5654, 55sstrdi 3927 . . . . . . . . 9 ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))
5756a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
5857anim2d 614 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
5953, 58anim12d 611 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ((𝑥 ∈ 𝒫 𝑠 ∧ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))) → (𝑥 ∈ 𝒫 𝑡 ∧ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))))
6059reximdv2 3230 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6160reximdv 3232 . . . 4 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6247, 61mpd 15 . . 3 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
6317, 62exlimddv 1936 . 2 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
641, 2, 3, 4, 5, 63ramub 16339 1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wrex 3107  {crab 3110  Vcvv 3441  cin 3880  wss 3881  𝒫 cpw 4497  {csn 4525   class class class wbr 5030  ccnv 5518  cres 5521  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  cen 8489  cdom 8490  Fincfn 8492  1c1 10527  cle 10665  0cn0 11885  ...cfz 12885  chash 13686   Ramsey cram 16325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-ram 16327
This theorem is referenced by:  ramub1  16354
  Copyright terms: Public domain W3C validator