MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub2 Structured version   Visualization version   GIF version

Theorem ramub2 16926
Description: It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
rami.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
rami.m (𝜑𝑀 ∈ ℕ0)
rami.r (𝜑𝑅𝑉)
rami.f (𝜑𝐹:𝑅⟶ℕ0)
ramub2.n (𝜑𝑁 ∈ ℕ0)
ramub2.i ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
Assertion
Ref Expression
ramub2 (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁)
Distinct variable groups:   𝑓,𝑐,𝑠,𝑥,𝐶   𝜑,𝑐,𝑓,𝑠,𝑥   𝐹,𝑐,𝑓,𝑠,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑠,𝑥   𝑁,𝑎,𝑐,𝑓,𝑖,𝑠,𝑥   𝑉,𝑐,𝑓,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramub2
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rami.c . 2 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 rami.m . 2 (𝜑𝑀 ∈ ℕ0)
3 rami.r . 2 (𝜑𝑅𝑉)
4 rami.f . 2 (𝜑𝐹:𝑅⟶ℕ0)
5 ramub2.n . 2 (𝜑𝑁 ∈ ℕ0)
65adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ∈ ℕ0)
7 hashfz1 14253 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
86, 7syl 17 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (♯‘(1...𝑁)) = 𝑁)
9 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ≤ (♯‘𝑡))
108, 9eqbrtrd 5113 . . . . 5 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (♯‘(1...𝑁)) ≤ (♯‘𝑡))
11 fzfid 13880 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ∈ Fin)
12 vex 3440 . . . . . 6 𝑡 ∈ V
13 hashdom 14286 . . . . . 6 (((1...𝑁) ∈ Fin ∧ 𝑡 ∈ V) → ((♯‘(1...𝑁)) ≤ (♯‘𝑡) ↔ (1...𝑁) ≼ 𝑡))
1411, 12, 13sylancl 586 . . . . 5 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ((♯‘(1...𝑁)) ≤ (♯‘𝑡) ↔ (1...𝑁) ≼ 𝑡))
1510, 14mpbid 232 . . . 4 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ≼ 𝑡)
1612domen 8884 . . . 4 ((1...𝑁) ≼ 𝑡 ↔ ∃𝑠((1...𝑁) ≈ 𝑠𝑠𝑡))
1715, 16sylib 218 . . 3 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑠((1...𝑁) ≈ 𝑠𝑠𝑡))
18 simpll 766 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝜑)
19 ensym 8925 . . . . . . . 8 ((1...𝑁) ≈ 𝑠𝑠 ≈ (1...𝑁))
2019ad2antrl 728 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑠 ≈ (1...𝑁))
21 hasheni 14255 . . . . . . 7 (𝑠 ≈ (1...𝑁) → (♯‘𝑠) = (♯‘(1...𝑁)))
2220, 21syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘𝑠) = (♯‘(1...𝑁)))
235ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑁 ∈ ℕ0)
2423, 7syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘(1...𝑁)) = 𝑁)
2522, 24eqtrd 2766 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘𝑠) = 𝑁)
26 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑔:(𝑡𝐶𝑀)⟶𝑅)
27 simprr 772 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑠𝑡)
282ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑀 ∈ ℕ0)
291hashbcss 16916 . . . . . . 7 ((𝑡 ∈ V ∧ 𝑠𝑡𝑀 ∈ ℕ0) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀))
3012, 27, 28, 29mp3an2i 1468 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀))
3126, 30fssresd 6690 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)
32 vex 3440 . . . . . . 7 𝑔 ∈ V
3332resex 5978 . . . . . 6 (𝑔 ↾ (𝑠𝐶𝑀)) ∈ V
34 feq1 6629 . . . . . . . . 9 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓:(𝑠𝐶𝑀)⟶𝑅 ↔ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))
3534anbi2d 630 . . . . . . . 8 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅) ↔ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)))
3635anbi2d 630 . . . . . . 7 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) ↔ (𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))))
37 cnveq 5813 . . . . . . . . . . . 12 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → 𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)))
3837imaeq1d 6008 . . . . . . . . . . 11 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓 “ {𝑐}) = ((𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}))
39 cnvresima 6177 . . . . . . . . . . 11 ((𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}) = ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))
4038, 39eqtrdi 2782 . . . . . . . . . 10 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓 “ {𝑐}) = ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))
4140sseq2d 3967 . . . . . . . . 9 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
4241anbi2d 630 . . . . . . . 8 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))
43422rexbidv 3197 . . . . . . 7 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))
4436, 43imbi12d 344 . . . . . 6 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))))
45 ramub2.i . . . . . 6 ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
4633, 44, 45vtocl 3513 . . . . 5 ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
4718, 25, 31, 46syl12anc 836 . . . 4 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
48 sstr 3943 . . . . . . . . . 10 ((𝑥𝑠𝑠𝑡) → 𝑥𝑡)
4948expcom 413 . . . . . . . . 9 (𝑠𝑡 → (𝑥𝑠𝑥𝑡))
5049ad2antll 729 . . . . . . . 8 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑥𝑠𝑥𝑡))
51 velpw 4555 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
52 velpw 4555 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑡𝑥𝑡)
5350, 51, 523imtr4g 296 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑥 ∈ 𝒫 𝑠𝑥 ∈ 𝒫 𝑡))
54 id 22 . . . . . . . . . 10 ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))
55 inss1 4187 . . . . . . . . . 10 ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) ⊆ (𝑔 “ {𝑐})
5654, 55sstrdi 3947 . . . . . . . . 9 ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))
5756a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
5857anim2d 612 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
5953, 58anim12d 609 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ((𝑥 ∈ 𝒫 𝑠 ∧ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))) → (𝑥 ∈ 𝒫 𝑡 ∧ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))))
6059reximdv2 3142 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6160reximdv 3147 . . . 4 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6247, 61mpd 15 . . 3 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
6317, 62exlimddv 1936 . 2 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
641, 2, 3, 4, 5, 63ramub 16925 1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550  {csn 4576   class class class wbr 5091  ccnv 5615  cres 5618  cima 5619  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  cen 8866  cdom 8867  Fincfn 8869  1c1 11007  cle 11147  0cn0 12381  ...cfz 13407  chash 14237   Ramsey cram 16911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-ram 16913
This theorem is referenced by:  ramub1  16940
  Copyright terms: Public domain W3C validator