MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub2 Structured version   Visualization version   GIF version

Theorem ramub2 17052
Description: It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
rami.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
rami.m (𝜑𝑀 ∈ ℕ0)
rami.r (𝜑𝑅𝑉)
rami.f (𝜑𝐹:𝑅⟶ℕ0)
ramub2.n (𝜑𝑁 ∈ ℕ0)
ramub2.i ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
Assertion
Ref Expression
ramub2 (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁)
Distinct variable groups:   𝑓,𝑐,𝑠,𝑥,𝐶   𝜑,𝑐,𝑓,𝑠,𝑥   𝐹,𝑐,𝑓,𝑠,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑠,𝑥   𝑁,𝑎,𝑐,𝑓,𝑖,𝑠,𝑥   𝑉,𝑐,𝑓,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramub2
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rami.c . 2 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 rami.m . 2 (𝜑𝑀 ∈ ℕ0)
3 rami.r . 2 (𝜑𝑅𝑉)
4 rami.f . 2 (𝜑𝐹:𝑅⟶ℕ0)
5 ramub2.n . 2 (𝜑𝑁 ∈ ℕ0)
65adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ∈ ℕ0)
7 hashfz1 14385 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
86, 7syl 17 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (♯‘(1...𝑁)) = 𝑁)
9 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → 𝑁 ≤ (♯‘𝑡))
108, 9eqbrtrd 5165 . . . . 5 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (♯‘(1...𝑁)) ≤ (♯‘𝑡))
11 fzfid 14014 . . . . . 6 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ∈ Fin)
12 vex 3484 . . . . . 6 𝑡 ∈ V
13 hashdom 14418 . . . . . 6 (((1...𝑁) ∈ Fin ∧ 𝑡 ∈ V) → ((♯‘(1...𝑁)) ≤ (♯‘𝑡) ↔ (1...𝑁) ≼ 𝑡))
1411, 12, 13sylancl 586 . . . . 5 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ((♯‘(1...𝑁)) ≤ (♯‘𝑡) ↔ (1...𝑁) ≼ 𝑡))
1510, 14mpbid 232 . . . 4 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → (1...𝑁) ≼ 𝑡)
1612domen 9002 . . . 4 ((1...𝑁) ≼ 𝑡 ↔ ∃𝑠((1...𝑁) ≈ 𝑠𝑠𝑡))
1715, 16sylib 218 . . 3 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑠((1...𝑁) ≈ 𝑠𝑠𝑡))
18 simpll 767 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝜑)
19 ensym 9043 . . . . . . . 8 ((1...𝑁) ≈ 𝑠𝑠 ≈ (1...𝑁))
2019ad2antrl 728 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑠 ≈ (1...𝑁))
21 hasheni 14387 . . . . . . 7 (𝑠 ≈ (1...𝑁) → (♯‘𝑠) = (♯‘(1...𝑁)))
2220, 21syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘𝑠) = (♯‘(1...𝑁)))
235ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑁 ∈ ℕ0)
2423, 7syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘(1...𝑁)) = 𝑁)
2522, 24eqtrd 2777 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (♯‘𝑠) = 𝑁)
26 simplrr 778 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑔:(𝑡𝐶𝑀)⟶𝑅)
27 simprr 773 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑠𝑡)
282ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → 𝑀 ∈ ℕ0)
291hashbcss 17042 . . . . . . 7 ((𝑡 ∈ V ∧ 𝑠𝑡𝑀 ∈ ℕ0) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀))
3012, 27, 28, 29mp3an2i 1468 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑠𝐶𝑀) ⊆ (𝑡𝐶𝑀))
3126, 30fssresd 6775 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)
32 vex 3484 . . . . . . 7 𝑔 ∈ V
3332resex 6047 . . . . . 6 (𝑔 ↾ (𝑠𝐶𝑀)) ∈ V
34 feq1 6716 . . . . . . . . 9 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓:(𝑠𝐶𝑀)⟶𝑅 ↔ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))
3534anbi2d 630 . . . . . . . 8 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅) ↔ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)))
3635anbi2d 630 . . . . . . 7 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) ↔ (𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅))))
37 cnveq 5884 . . . . . . . . . . . 12 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → 𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)))
3837imaeq1d 6077 . . . . . . . . . . 11 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓 “ {𝑐}) = ((𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}))
39 cnvresima 6250 . . . . . . . . . . 11 ((𝑔 ↾ (𝑠𝐶𝑀)) “ {𝑐}) = ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))
4038, 39eqtrdi 2793 . . . . . . . . . 10 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (𝑓 “ {𝑐}) = ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))
4140sseq2d 4016 . . . . . . . . 9 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
4241anbi2d 630 . . . . . . . 8 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))
43422rexbidv 3222 . . . . . . 7 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))))
4436, 43imbi12d 344 . . . . . 6 (𝑓 = (𝑔 ↾ (𝑠𝐶𝑀)) → (((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))) ↔ ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))))
45 ramub2.i . . . . . 6 ((𝜑 ∧ ((♯‘𝑠) = 𝑁𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
4633, 44, 45vtocl 3558 . . . . 5 ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ (𝑔 ↾ (𝑠𝐶𝑀)):(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
4718, 25, 31, 46syl12anc 837 . . . 4 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))))
48 sstr 3992 . . . . . . . . . 10 ((𝑥𝑠𝑠𝑡) → 𝑥𝑡)
4948expcom 413 . . . . . . . . 9 (𝑠𝑡 → (𝑥𝑠𝑥𝑡))
5049ad2antll 729 . . . . . . . 8 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑥𝑠𝑥𝑡))
51 velpw 4605 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
52 velpw 4605 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑡𝑥𝑡)
5350, 51, 523imtr4g 296 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (𝑥 ∈ 𝒫 𝑠𝑥 ∈ 𝒫 𝑡))
54 id 22 . . . . . . . . . 10 ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))
55 inss1 4237 . . . . . . . . . 10 ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) ⊆ (𝑔 “ {𝑐})
5654, 55sstrdi 3996 . . . . . . . . 9 ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))
5756a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ((𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)) → (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
5857anim2d 612 . . . . . . 7 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
5953, 58anim12d 609 . . . . . 6 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ((𝑥 ∈ 𝒫 𝑠 ∧ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀)))) → (𝑥 ∈ 𝒫 𝑡 ∧ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))))
6059reximdv2 3164 . . . . 5 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6160reximdv 3170 . . . 4 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → (∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ ((𝑔 “ {𝑐}) ∩ (𝑠𝐶𝑀))) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐}))))
6247, 61mpd 15 . . 3 (((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) ∧ ((1...𝑁) ≈ 𝑠𝑠𝑡)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
6317, 62exlimddv 1935 . 2 ((𝜑 ∧ (𝑁 ≤ (♯‘𝑡) ∧ 𝑔:(𝑡𝐶𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑡((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑔 “ {𝑐})))
641, 2, 3, 4, 5, 63ramub 17051 1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3070  {crab 3436  Vcvv 3480  cin 3950  wss 3951  𝒫 cpw 4600  {csn 4626   class class class wbr 5143  ccnv 5684  cres 5687  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  cen 8982  cdom 8983  Fincfn 8985  1c1 11156  cle 11296  0cn0 12526  ...cfz 13547  chash 14369   Ramsey cram 17037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-ram 17039
This theorem is referenced by:  ramub1  17066
  Copyright terms: Public domain W3C validator