| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngui | Structured version Visualization version GIF version | ||
| Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| drngui.b | ⊢ 𝐵 = (Base‘𝑅) |
| drngui.z | ⊢ 0 = (0g‘𝑅) |
| drngui.r | ⊢ 𝑅 ∈ DivRing |
| Ref | Expression |
|---|---|
| drngui | ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngui.r | . . . 4 ⊢ 𝑅 ∈ DivRing | |
| 2 | drngui.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 4 | drngui.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 5 | 2, 3, 4 | isdrng 20642 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
| 6 | 1, 5 | mpbi 230 | . . 3 ⊢ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
| 7 | 6 | simpri 485 | . 2 ⊢ (Unit‘𝑅) = (𝐵 ∖ { 0 }) |
| 8 | 7 | eqcomi 2738 | 1 ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 {csn 4589 ‘cfv 6511 Basecbs 17179 0gc0g 17402 Ringcrg 20142 Unitcui 20264 DivRingcdr 20638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-drng 20640 |
| This theorem is referenced by: cnflddiv 21312 cnflddivOLD 21313 cnfldinv 21314 cnsubdrglem 21335 cnmgpabl 21345 cnmsubglem 21347 gzrngunit 21350 zringunit 21376 expghm 21385 psgninv 21491 zrhpsgnmhm 21493 amgmlem 26900 dchrghm 27167 dchrabs 27171 sum2dchr 27185 lgseisenlem4 27289 qrngdiv 27535 proot1ex 43185 amgmwlem 49791 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |