| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngui | Structured version Visualization version GIF version | ||
| Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| drngui.b | ⊢ 𝐵 = (Base‘𝑅) |
| drngui.z | ⊢ 0 = (0g‘𝑅) |
| drngui.r | ⊢ 𝑅 ∈ DivRing |
| Ref | Expression |
|---|---|
| drngui | ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngui.r | . . . 4 ⊢ 𝑅 ∈ DivRing | |
| 2 | drngui.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | eqid 2733 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 4 | drngui.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 5 | 2, 3, 4 | isdrng 20650 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
| 6 | 1, 5 | mpbi 230 | . . 3 ⊢ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
| 7 | 6 | simpri 485 | . 2 ⊢ (Unit‘𝑅) = (𝐵 ∖ { 0 }) |
| 8 | 7 | eqcomi 2742 | 1 ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 {csn 4575 ‘cfv 6486 Basecbs 17122 0gc0g 17345 Ringcrg 20153 Unitcui 20275 DivRingcdr 20646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-drng 20648 |
| This theorem is referenced by: cnflddiv 21339 cnflddivOLD 21340 cnfldinv 21341 cnsubdrglem 21357 cnmgpabl 21367 cnmsubglem 21369 gzrngunit 21372 zringunit 21405 expghm 21414 psgninv 21521 zrhpsgnmhm 21523 amgmlem 26928 dchrghm 27195 dchrabs 27199 sum2dchr 27213 lgseisenlem4 27317 qrngdiv 27563 proot1ex 43313 amgmwlem 49927 amgmlemALT 49928 |
| Copyright terms: Public domain | W3C validator |