| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngui | Structured version Visualization version GIF version | ||
| Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| drngui.b | ⊢ 𝐵 = (Base‘𝑅) |
| drngui.z | ⊢ 0 = (0g‘𝑅) |
| drngui.r | ⊢ 𝑅 ∈ DivRing |
| Ref | Expression |
|---|---|
| drngui | ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngui.r | . . . 4 ⊢ 𝑅 ∈ DivRing | |
| 2 | drngui.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 4 | drngui.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 5 | 2, 3, 4 | isdrng 20646 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
| 6 | 1, 5 | mpbi 230 | . . 3 ⊢ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
| 7 | 6 | simpri 485 | . 2 ⊢ (Unit‘𝑅) = (𝐵 ∖ { 0 }) |
| 8 | 7 | eqcomi 2740 | 1 ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 {csn 4576 ‘cfv 6481 Basecbs 17117 0gc0g 17340 Ringcrg 20149 Unitcui 20271 DivRingcdr 20642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-drng 20644 |
| This theorem is referenced by: cnflddiv 21335 cnflddivOLD 21336 cnfldinv 21337 cnsubdrglem 21353 cnmgpabl 21363 cnmsubglem 21365 gzrngunit 21368 zringunit 21401 expghm 21410 psgninv 21517 zrhpsgnmhm 21519 amgmlem 26925 dchrghm 27192 dchrabs 27196 sum2dchr 27210 lgseisenlem4 27314 qrngdiv 27560 proot1ex 43228 amgmwlem 49833 amgmlemALT 49834 |
| Copyright terms: Public domain | W3C validator |