MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngui Structured version   Visualization version   GIF version

Theorem drngui 19997
Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
drngui.b 𝐵 = (Base‘𝑅)
drngui.z 0 = (0g𝑅)
drngui.r 𝑅 ∈ DivRing
Assertion
Ref Expression
drngui (𝐵 ∖ { 0 }) = (Unit‘𝑅)

Proof of Theorem drngui
StepHypRef Expression
1 drngui.r . . . 4 𝑅 ∈ DivRing
2 drngui.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2738 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
4 drngui.z . . . . 5 0 = (0g𝑅)
52, 3, 4isdrng 19995 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
61, 5mpbi 229 . . 3 (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))
76simpri 486 . 2 (Unit‘𝑅) = (𝐵 ∖ { 0 })
87eqcomi 2747 1 (𝐵 ∖ { 0 }) = (Unit‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  cdif 3884  {csn 4561  cfv 6433  Basecbs 16912  0gc0g 17150  Ringcrg 19783  Unitcui 19881  DivRingcdr 19991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-drng 19993
This theorem is referenced by:  cnflddiv  20628  cnfldinv  20629  cnsubdrglem  20649  cnmgpabl  20659  cnmsubglem  20661  gzrngunit  20664  zringunit  20688  expghm  20697  psgninv  20787  zrhpsgnmhm  20789  amgmlem  26139  dchrghm  26404  dchrabs  26408  sum2dchr  26422  lgseisenlem4  26526  qrngdiv  26772  proot1ex  41026  amgmwlem  46506  amgmlemALT  46507
  Copyright terms: Public domain W3C validator