MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngui Structured version   Visualization version   GIF version

Theorem drngui 20508
Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
drngui.b 𝐡 = (Baseβ€˜π‘…)
drngui.z 0 = (0gβ€˜π‘…)
drngui.r 𝑅 ∈ DivRing
Assertion
Ref Expression
drngui (𝐡 βˆ– { 0 }) = (Unitβ€˜π‘…)

Proof of Theorem drngui
StepHypRef Expression
1 drngui.r . . . 4 𝑅 ∈ DivRing
2 drngui.b . . . . 5 𝐡 = (Baseβ€˜π‘…)
3 eqid 2730 . . . . 5 (Unitβ€˜π‘…) = (Unitβ€˜π‘…)
4 drngui.z . . . . 5 0 = (0gβ€˜π‘…)
52, 3, 4isdrng 20506 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unitβ€˜π‘…) = (𝐡 βˆ– { 0 })))
61, 5mpbi 229 . . 3 (𝑅 ∈ Ring ∧ (Unitβ€˜π‘…) = (𝐡 βˆ– { 0 }))
76simpri 484 . 2 (Unitβ€˜π‘…) = (𝐡 βˆ– { 0 })
87eqcomi 2739 1 (𝐡 βˆ– { 0 }) = (Unitβ€˜π‘…)
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 394   = wceq 1539   ∈ wcel 2104   βˆ– cdif 3946  {csn 4629  β€˜cfv 6544  Basecbs 17150  0gc0g 17391  Ringcrg 20129  Unitcui 20248  DivRingcdr 20502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-drng 20504
This theorem is referenced by:  cnflddiv  21177  cnfldinv  21178  cnsubdrglem  21198  cnmgpabl  21208  cnmsubglem  21210  gzrngunit  21213  zringunit  21239  expghm  21248  psgninv  21356  zrhpsgnmhm  21358  amgmlem  26728  dchrghm  26993  dchrabs  26997  sum2dchr  27011  lgseisenlem4  27115  qrngdiv  27361  proot1ex  42247  amgmwlem  47938  amgmlemALT  47939
  Copyright terms: Public domain W3C validator