| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngui | Structured version Visualization version GIF version | ||
| Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| drngui.b | ⊢ 𝐵 = (Base‘𝑅) |
| drngui.z | ⊢ 0 = (0g‘𝑅) |
| drngui.r | ⊢ 𝑅 ∈ DivRing |
| Ref | Expression |
|---|---|
| drngui | ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngui.r | . . . 4 ⊢ 𝑅 ∈ DivRing | |
| 2 | drngui.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 4 | drngui.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 5 | 2, 3, 4 | isdrng 20680 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
| 6 | 1, 5 | mpbi 230 | . . 3 ⊢ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
| 7 | 6 | simpri 485 | . 2 ⊢ (Unit‘𝑅) = (𝐵 ∖ { 0 }) |
| 8 | 7 | eqcomi 2743 | 1 ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3921 {csn 4599 ‘cfv 6528 Basecbs 17215 0gc0g 17440 Ringcrg 20180 Unitcui 20302 DivRingcdr 20676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-iota 6481 df-fv 6536 df-drng 20678 |
| This theorem is referenced by: cnflddiv 21350 cnflddivOLD 21351 cnfldinv 21352 cnsubdrglem 21373 cnmgpabl 21383 cnmsubglem 21385 gzrngunit 21388 zringunit 21414 expghm 21423 psgninv 21529 zrhpsgnmhm 21531 amgmlem 26938 dchrghm 27205 dchrabs 27209 sum2dchr 27223 lgseisenlem4 27327 qrngdiv 27573 proot1ex 43152 amgmwlem 49507 amgmlemALT 49508 |
| Copyright terms: Public domain | W3C validator |