![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngui | Structured version Visualization version GIF version |
Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
drngui.b | β’ π΅ = (Baseβπ ) |
drngui.z | β’ 0 = (0gβπ ) |
drngui.r | β’ π β DivRing |
Ref | Expression |
---|---|
drngui | β’ (π΅ β { 0 }) = (Unitβπ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngui.r | . . . 4 β’ π β DivRing | |
2 | drngui.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
3 | eqid 2733 | . . . . 5 β’ (Unitβπ ) = (Unitβπ ) | |
4 | drngui.z | . . . . 5 β’ 0 = (0gβπ ) | |
5 | 2, 3, 4 | isdrng 20361 | . . . 4 β’ (π β DivRing β (π β Ring β§ (Unitβπ ) = (π΅ β { 0 }))) |
6 | 1, 5 | mpbi 229 | . . 3 β’ (π β Ring β§ (Unitβπ ) = (π΅ β { 0 })) |
7 | 6 | simpri 487 | . 2 β’ (Unitβπ ) = (π΅ β { 0 }) |
8 | 7 | eqcomi 2742 | 1 β’ (π΅ β { 0 }) = (Unitβπ ) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 397 = wceq 1542 β wcel 2107 β cdif 3946 {csn 4629 βcfv 6544 Basecbs 17144 0gc0g 17385 Ringcrg 20056 Unitcui 20169 DivRingcdr 20357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-drng 20359 |
This theorem is referenced by: cnflddiv 20975 cnfldinv 20976 cnsubdrglem 20996 cnmgpabl 21006 cnmsubglem 21008 gzrngunit 21011 zringunit 21036 expghm 21045 psgninv 21135 zrhpsgnmhm 21137 amgmlem 26494 dchrghm 26759 dchrabs 26763 sum2dchr 26777 lgseisenlem4 26881 qrngdiv 27127 proot1ex 41991 amgmwlem 47897 amgmlemALT 47898 |
Copyright terms: Public domain | W3C validator |