![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngui | Structured version Visualization version GIF version |
Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
drngui.b | ⊢ 𝐵 = (Base‘𝑅) |
drngui.z | ⊢ 0 = (0g‘𝑅) |
drngui.r | ⊢ 𝑅 ∈ DivRing |
Ref | Expression |
---|---|
drngui | ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngui.r | . . . 4 ⊢ 𝑅 ∈ DivRing | |
2 | drngui.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2740 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
4 | drngui.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
5 | 2, 3, 4 | isdrng 20755 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
6 | 1, 5 | mpbi 230 | . . 3 ⊢ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
7 | 6 | simpri 485 | . 2 ⊢ (Unit‘𝑅) = (𝐵 ∖ { 0 }) |
8 | 7 | eqcomi 2749 | 1 ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 {csn 4648 ‘cfv 6573 Basecbs 17258 0gc0g 17499 Ringcrg 20260 Unitcui 20381 DivRingcdr 20751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-drng 20753 |
This theorem is referenced by: cnflddiv 21436 cnflddivOLD 21437 cnfldinv 21438 cnsubdrglem 21459 cnmgpabl 21469 cnmsubglem 21471 gzrngunit 21474 zringunit 21500 expghm 21509 psgninv 21623 zrhpsgnmhm 21625 amgmlem 27051 dchrghm 27318 dchrabs 27322 sum2dchr 27336 lgseisenlem4 27440 qrngdiv 27686 proot1ex 43157 amgmwlem 48896 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |