Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drngui | Structured version Visualization version GIF version |
Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
drngui.b | ⊢ 𝐵 = (Base‘𝑅) |
drngui.z | ⊢ 0 = (0g‘𝑅) |
drngui.r | ⊢ 𝑅 ∈ DivRing |
Ref | Expression |
---|---|
drngui | ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngui.r | . . . 4 ⊢ 𝑅 ∈ DivRing | |
2 | drngui.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2738 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
4 | drngui.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
5 | 2, 3, 4 | isdrng 19995 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
6 | 1, 5 | mpbi 229 | . . 3 ⊢ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
7 | 6 | simpri 486 | . 2 ⊢ (Unit‘𝑅) = (𝐵 ∖ { 0 }) |
8 | 7 | eqcomi 2747 | 1 ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 {csn 4561 ‘cfv 6433 Basecbs 16912 0gc0g 17150 Ringcrg 19783 Unitcui 19881 DivRingcdr 19991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-drng 19993 |
This theorem is referenced by: cnflddiv 20628 cnfldinv 20629 cnsubdrglem 20649 cnmgpabl 20659 cnmsubglem 20661 gzrngunit 20664 zringunit 20688 expghm 20697 psgninv 20787 zrhpsgnmhm 20789 amgmlem 26139 dchrghm 26404 dchrabs 26408 sum2dchr 26422 lgseisenlem4 26526 qrngdiv 26772 proot1ex 41026 amgmwlem 46506 amgmlemALT 46507 |
Copyright terms: Public domain | W3C validator |