Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drngui | Structured version Visualization version GIF version |
Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
drngui.b | ⊢ 𝐵 = (Base‘𝑅) |
drngui.z | ⊢ 0 = (0g‘𝑅) |
drngui.r | ⊢ 𝑅 ∈ DivRing |
Ref | Expression |
---|---|
drngui | ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngui.r | . . . 4 ⊢ 𝑅 ∈ DivRing | |
2 | drngui.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2738 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
4 | drngui.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
5 | 2, 3, 4 | isdrng 19910 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
6 | 1, 5 | mpbi 229 | . . 3 ⊢ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
7 | 6 | simpri 485 | . 2 ⊢ (Unit‘𝑅) = (𝐵 ∖ { 0 }) |
8 | 7 | eqcomi 2747 | 1 ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 {csn 4558 ‘cfv 6418 Basecbs 16840 0gc0g 17067 Ringcrg 19698 Unitcui 19796 DivRingcdr 19906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-drng 19908 |
This theorem is referenced by: cnflddiv 20540 cnfldinv 20541 cnsubdrglem 20561 cnmgpabl 20571 cnmsubglem 20573 gzrngunit 20576 zringunit 20600 expghm 20609 psgninv 20699 zrhpsgnmhm 20701 amgmlem 26044 dchrghm 26309 dchrabs 26313 sum2dchr 26327 lgseisenlem4 26431 qrngdiv 26677 proot1ex 40942 amgmwlem 46392 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |