MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngui Structured version   Visualization version   GIF version

Theorem drngui 20682
Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
drngui.b 𝐵 = (Base‘𝑅)
drngui.z 0 = (0g𝑅)
drngui.r 𝑅 ∈ DivRing
Assertion
Ref Expression
drngui (𝐵 ∖ { 0 }) = (Unit‘𝑅)

Proof of Theorem drngui
StepHypRef Expression
1 drngui.r . . . 4 𝑅 ∈ DivRing
2 drngui.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2734 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
4 drngui.z . . . . 5 0 = (0g𝑅)
52, 3, 4isdrng 20680 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
61, 5mpbi 230 . . 3 (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))
76simpri 485 . 2 (Unit‘𝑅) = (𝐵 ∖ { 0 })
87eqcomi 2743 1 (𝐵 ∖ { 0 }) = (Unit‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2107  cdif 3921  {csn 4599  cfv 6528  Basecbs 17215  0gc0g 17440  Ringcrg 20180  Unitcui 20302  DivRingcdr 20676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-iota 6481  df-fv 6536  df-drng 20678
This theorem is referenced by:  cnflddiv  21350  cnflddivOLD  21351  cnfldinv  21352  cnsubdrglem  21373  cnmgpabl  21383  cnmsubglem  21385  gzrngunit  21388  zringunit  21414  expghm  21423  psgninv  21529  zrhpsgnmhm  21531  amgmlem  26938  dchrghm  27205  dchrabs  27209  sum2dchr  27223  lgseisenlem4  27327  qrngdiv  27573  proot1ex  43152  amgmwlem  49507  amgmlemALT  49508
  Copyright terms: Public domain W3C validator