MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngui Structured version   Visualization version   GIF version

Theorem drngui 20363
Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
drngui.b 𝐡 = (Baseβ€˜π‘…)
drngui.z 0 = (0gβ€˜π‘…)
drngui.r 𝑅 ∈ DivRing
Assertion
Ref Expression
drngui (𝐡 βˆ– { 0 }) = (Unitβ€˜π‘…)

Proof of Theorem drngui
StepHypRef Expression
1 drngui.r . . . 4 𝑅 ∈ DivRing
2 drngui.b . . . . 5 𝐡 = (Baseβ€˜π‘…)
3 eqid 2733 . . . . 5 (Unitβ€˜π‘…) = (Unitβ€˜π‘…)
4 drngui.z . . . . 5 0 = (0gβ€˜π‘…)
52, 3, 4isdrng 20361 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unitβ€˜π‘…) = (𝐡 βˆ– { 0 })))
61, 5mpbi 229 . . 3 (𝑅 ∈ Ring ∧ (Unitβ€˜π‘…) = (𝐡 βˆ– { 0 }))
76simpri 487 . 2 (Unitβ€˜π‘…) = (𝐡 βˆ– { 0 })
87eqcomi 2742 1 (𝐡 βˆ– { 0 }) = (Unitβ€˜π‘…)
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βˆ– cdif 3946  {csn 4629  β€˜cfv 6544  Basecbs 17144  0gc0g 17385  Ringcrg 20056  Unitcui 20169  DivRingcdr 20357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-drng 20359
This theorem is referenced by:  cnflddiv  20975  cnfldinv  20976  cnsubdrglem  20996  cnmgpabl  21006  cnmsubglem  21008  gzrngunit  21011  zringunit  21036  expghm  21045  psgninv  21135  zrhpsgnmhm  21137  amgmlem  26494  dchrghm  26759  dchrabs  26763  sum2dchr  26777  lgseisenlem4  26881  qrngdiv  27127  proot1ex  41991  amgmwlem  47897  amgmlemALT  47898
  Copyright terms: Public domain W3C validator