| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngui | Structured version Visualization version GIF version | ||
| Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| drngui.b | ⊢ 𝐵 = (Base‘𝑅) |
| drngui.z | ⊢ 0 = (0g‘𝑅) |
| drngui.r | ⊢ 𝑅 ∈ DivRing |
| Ref | Expression |
|---|---|
| drngui | ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngui.r | . . . 4 ⊢ 𝑅 ∈ DivRing | |
| 2 | drngui.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 4 | drngui.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 5 | 2, 3, 4 | isdrng 20698 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
| 6 | 1, 5 | mpbi 230 | . . 3 ⊢ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
| 7 | 6 | simpri 485 | . 2 ⊢ (Unit‘𝑅) = (𝐵 ∖ { 0 }) |
| 8 | 7 | eqcomi 2745 | 1 ⊢ (𝐵 ∖ { 0 }) = (Unit‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 {csn 4606 ‘cfv 6536 Basecbs 17233 0gc0g 17458 Ringcrg 20198 Unitcui 20320 DivRingcdr 20694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-drng 20696 |
| This theorem is referenced by: cnflddiv 21368 cnflddivOLD 21369 cnfldinv 21370 cnsubdrglem 21391 cnmgpabl 21401 cnmsubglem 21403 gzrngunit 21406 zringunit 21432 expghm 21441 psgninv 21547 zrhpsgnmhm 21549 amgmlem 26957 dchrghm 27224 dchrabs 27228 sum2dchr 27242 lgseisenlem4 27346 qrngdiv 27592 proot1ex 43187 amgmwlem 49633 amgmlemALT 49634 |
| Copyright terms: Public domain | W3C validator |