MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmsubglem Structured version   Visualization version   GIF version

Theorem cnmsubglem 21420
Description: Lemma for rpmsubg 21421 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
cnmgpabl.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
cnmsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnmsubglem.2 (𝑥𝐴𝑥 ≠ 0)
cnmsubglem.3 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
cnmsubglem.4 1 ∈ 𝐴
cnmsubglem.5 (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)
Assertion
Ref Expression
cnmsubglem 𝐴 ∈ (SubGrp‘𝑀)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑀,𝑦

Proof of Theorem cnmsubglem
StepHypRef Expression
1 cnmsubglem.1 . . . 4 (𝑥𝐴𝑥 ∈ ℂ)
2 cnmsubglem.2 . . . 4 (𝑥𝐴𝑥 ≠ 0)
3 eldifsn 4785 . . . 4 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
41, 2, 3sylanbrc 581 . . 3 (𝑥𝐴𝑥 ∈ (ℂ ∖ {0}))
54ssriv 3982 . 2 𝐴 ⊆ (ℂ ∖ {0})
6 cnmsubglem.4 . . 3 1 ∈ 𝐴
76ne0ii 4337 . 2 𝐴 ≠ ∅
8 cnmsubglem.3 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
98ralrimiva 3136 . . . 4 (𝑥𝐴 → ∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
10 cnfldinv 21387 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
111, 2, 10syl2anc 582 . . . . 5 (𝑥𝐴 → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
12 cnmsubglem.5 . . . . 5 (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)
1311, 12eqeltrd 2826 . . . 4 (𝑥𝐴 → ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
149, 13jca 510 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))
1514rgen 3053 . 2 𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
16 cnmgpabl.m . . . 4 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1716cnmgpabl 21418 . . 3 𝑀 ∈ Abel
18 ablgrp 19776 . . 3 (𝑀 ∈ Abel → 𝑀 ∈ Grp)
19 difss 4128 . . . . 5 (ℂ ∖ {0}) ⊆ ℂ
20 eqid 2726 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
21 cnfldbas 21340 . . . . . . 7 ℂ = (Base‘ℂfld)
2220, 21mgpbas 20116 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
2316, 22ressbas2 17243 . . . . 5 ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑀))
2419, 23ax-mp 5 . . . 4 (ℂ ∖ {0}) = (Base‘𝑀)
25 cnex 11227 . . . . 5 ℂ ∈ V
26 difexg 5324 . . . . 5 (ℂ ∈ V → (ℂ ∖ {0}) ∈ V)
27 cnfldmul 21344 . . . . . . 7 · = (.r‘ℂfld)
2820, 27mgpplusg 20114 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
2916, 28ressplusg 17296 . . . . 5 ((ℂ ∖ {0}) ∈ V → · = (+g𝑀))
3025, 26, 29mp2b 10 . . . 4 · = (+g𝑀)
31 cnfld0 21377 . . . . . 6 0 = (0g‘ℂfld)
32 cndrng 21383 . . . . . 6 fld ∈ DivRing
3321, 31, 32drngui 20706 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
34 eqid 2726 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
3533, 16, 34invrfval 20364 . . . 4 (invr‘ℂfld) = (invg𝑀)
3624, 30, 35issubg2 19128 . . 3 (𝑀 ∈ Grp → (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))))
3717, 18, 36mp2b 10 . 2 (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)))
385, 7, 15, 37mpbir3an 1338 1 𝐴 ∈ (SubGrp‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  Vcvv 3462  cdif 3943  wss 3946  c0 4322  {csn 4623  cfv 6543  (class class class)co 7413  cc 11144  0cc0 11146  1c1 11147   · cmul 11151   / cdiv 11909  Basecbs 17205  s cress 17234  +gcplusg 17258  Grpcgrp 18920  SubGrpcsubg 19107  Abelcabl 19772  mulGrpcmgp 20110  invrcinvr 20362  fldccnfld 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-4 12320  df-5 12321  df-6 12322  df-7 12323  df-8 12324  df-9 12325  df-n0 12516  df-z 12602  df-dec 12721  df-uz 12866  df-fz 13530  df-struct 17141  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-ress 17235  df-plusg 17271  df-mulr 17272  df-starv 17273  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-0g 17448  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-grp 18923  df-minusg 18924  df-subg 19110  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20129  df-ur 20158  df-ring 20211  df-cring 20212  df-oppr 20309  df-dvdsr 20332  df-unit 20333  df-invr 20363  df-dvr 20376  df-drng 20702  df-cnfld 21337
This theorem is referenced by:  rpmsubg  21421  cnmsgnsubg  21566
  Copyright terms: Public domain W3C validator