| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmsubglem | Structured version Visualization version GIF version | ||
| Description: Lemma for rpmsubg 21368 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| Ref | Expression |
|---|---|
| cnmgpabl.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| cnmsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
| cnmsubglem.2 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) |
| cnmsubglem.3 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
| cnmsubglem.4 | ⊢ 1 ∈ 𝐴 |
| cnmsubglem.5 | ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnmsubglem | ⊢ 𝐴 ∈ (SubGrp‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsubglem.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
| 2 | cnmsubglem.2 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) | |
| 3 | eldifsn 4735 | . . . 4 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (ℂ ∖ {0})) |
| 5 | 4 | ssriv 3933 | . 2 ⊢ 𝐴 ⊆ (ℂ ∖ {0}) |
| 6 | cnmsubglem.4 | . . 3 ⊢ 1 ∈ 𝐴 | |
| 7 | 6 | ne0ii 4291 | . 2 ⊢ 𝐴 ≠ ∅ |
| 8 | cnmsubglem.3 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) | |
| 9 | 8 | ralrimiva 3124 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
| 10 | cnfldinv 21339 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) | |
| 11 | 1, 2, 10 | syl2anc 584 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
| 12 | cnmsubglem.5 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) | |
| 13 | 11, 12 | eqeltrd 2831 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
| 14 | 9, 13 | jca 511 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)) |
| 15 | 14 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
| 16 | cnmgpabl.m | . . . 4 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 17 | 16 | cnmgpabl 21365 | . . 3 ⊢ 𝑀 ∈ Abel |
| 18 | ablgrp 19697 | . . 3 ⊢ (𝑀 ∈ Abel → 𝑀 ∈ Grp) | |
| 19 | difss 4083 | . . . . 5 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
| 20 | eqid 2731 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 21 | cnfldbas 21295 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 22 | 20, 21 | mgpbas 20063 | . . . . . 6 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 23 | 16, 22 | ressbas2 17149 | . . . . 5 ⊢ ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑀)) |
| 24 | 19, 23 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) = (Base‘𝑀) |
| 25 | cnex 11087 | . . . . 5 ⊢ ℂ ∈ V | |
| 26 | difexg 5265 | . . . . 5 ⊢ (ℂ ∈ V → (ℂ ∖ {0}) ∈ V) | |
| 27 | cnfldmul 21299 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
| 28 | 20, 27 | mgpplusg 20062 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 29 | 16, 28 | ressplusg 17195 | . . . . 5 ⊢ ((ℂ ∖ {0}) ∈ V → · = (+g‘𝑀)) |
| 30 | 25, 26, 29 | mp2b 10 | . . . 4 ⊢ · = (+g‘𝑀) |
| 31 | cnfld0 21329 | . . . . . 6 ⊢ 0 = (0g‘ℂfld) | |
| 32 | cndrng 21335 | . . . . . 6 ⊢ ℂfld ∈ DivRing | |
| 33 | 21, 31, 32 | drngui 20650 | . . . . 5 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
| 34 | eqid 2731 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 35 | 33, 16, 34 | invrfval 20307 | . . . 4 ⊢ (invr‘ℂfld) = (invg‘𝑀) |
| 36 | 24, 30, 35 | issubg2 19054 | . . 3 ⊢ (𝑀 ∈ Grp → (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)))) |
| 37 | 17, 18, 36 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))) |
| 38 | 5, 7, 15, 37 | mpbir3an 1342 | 1 ⊢ 𝐴 ∈ (SubGrp‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4280 {csn 4573 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 · cmul 11011 / cdiv 11774 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 Grpcgrp 18846 SubGrpcsubg 19033 Abelcabl 19693 mulGrpcmgp 20058 invrcinvr 20305 ℂfldccnfld 21291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-drng 20646 df-cnfld 21292 |
| This theorem is referenced by: rpmsubg 21368 cnmsgnsubg 21514 |
| Copyright terms: Public domain | W3C validator |