![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmsubglem | Structured version Visualization version GIF version |
Description: Lemma for rpmsubg 21293 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
cnmgpabl.m | β’ π = ((mulGrpββfld) βΎs (β β {0})) |
cnmsubglem.1 | β’ (π₯ β π΄ β π₯ β β) |
cnmsubglem.2 | β’ (π₯ β π΄ β π₯ β 0) |
cnmsubglem.3 | β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯ Β· π¦) β π΄) |
cnmsubglem.4 | β’ 1 β π΄ |
cnmsubglem.5 | β’ (π₯ β π΄ β (1 / π₯) β π΄) |
Ref | Expression |
---|---|
cnmsubglem | β’ π΄ β (SubGrpβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmsubglem.1 | . . . 4 β’ (π₯ β π΄ β π₯ β β) | |
2 | cnmsubglem.2 | . . . 4 β’ (π₯ β π΄ β π₯ β 0) | |
3 | eldifsn 4782 | . . . 4 β’ (π₯ β (β β {0}) β (π₯ β β β§ π₯ β 0)) | |
4 | 1, 2, 3 | sylanbrc 582 | . . 3 β’ (π₯ β π΄ β π₯ β (β β {0})) |
5 | 4 | ssriv 3978 | . 2 β’ π΄ β (β β {0}) |
6 | cnmsubglem.4 | . . 3 β’ 1 β π΄ | |
7 | 6 | ne0ii 4329 | . 2 β’ π΄ β β |
8 | cnmsubglem.3 | . . . . 5 β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯ Β· π¦) β π΄) | |
9 | 8 | ralrimiva 3138 | . . . 4 β’ (π₯ β π΄ β βπ¦ β π΄ (π₯ Β· π¦) β π΄) |
10 | cnfldinv 21260 | . . . . . 6 β’ ((π₯ β β β§ π₯ β 0) β ((invrββfld)βπ₯) = (1 / π₯)) | |
11 | 1, 2, 10 | syl2anc 583 | . . . . 5 β’ (π₯ β π΄ β ((invrββfld)βπ₯) = (1 / π₯)) |
12 | cnmsubglem.5 | . . . . 5 β’ (π₯ β π΄ β (1 / π₯) β π΄) | |
13 | 11, 12 | eqeltrd 2825 | . . . 4 β’ (π₯ β π΄ β ((invrββfld)βπ₯) β π΄) |
14 | 9, 13 | jca 511 | . . 3 β’ (π₯ β π΄ β (βπ¦ β π΄ (π₯ Β· π¦) β π΄ β§ ((invrββfld)βπ₯) β π΄)) |
15 | 14 | rgen 3055 | . 2 β’ βπ₯ β π΄ (βπ¦ β π΄ (π₯ Β· π¦) β π΄ β§ ((invrββfld)βπ₯) β π΄) |
16 | cnmgpabl.m | . . . 4 β’ π = ((mulGrpββfld) βΎs (β β {0})) | |
17 | 16 | cnmgpabl 21290 | . . 3 β’ π β Abel |
18 | ablgrp 19695 | . . 3 β’ (π β Abel β π β Grp) | |
19 | difss 4123 | . . . . 5 β’ (β β {0}) β β | |
20 | eqid 2724 | . . . . . . 7 β’ (mulGrpββfld) = (mulGrpββfld) | |
21 | cnfldbas 21232 | . . . . . . 7 β’ β = (Baseββfld) | |
22 | 20, 21 | mgpbas 20035 | . . . . . 6 β’ β = (Baseβ(mulGrpββfld)) |
23 | 16, 22 | ressbas2 17181 | . . . . 5 β’ ((β β {0}) β β β (β β {0}) = (Baseβπ)) |
24 | 19, 23 | ax-mp 5 | . . . 4 β’ (β β {0}) = (Baseβπ) |
25 | cnex 11187 | . . . . 5 β’ β β V | |
26 | difexg 5317 | . . . . 5 β’ (β β V β (β β {0}) β V) | |
27 | cnfldmul 21234 | . . . . . . 7 β’ Β· = (.rββfld) | |
28 | 20, 27 | mgpplusg 20033 | . . . . . 6 β’ Β· = (+gβ(mulGrpββfld)) |
29 | 16, 28 | ressplusg 17234 | . . . . 5 β’ ((β β {0}) β V β Β· = (+gβπ)) |
30 | 25, 26, 29 | mp2b 10 | . . . 4 β’ Β· = (+gβπ) |
31 | cnfld0 21253 | . . . . . 6 β’ 0 = (0gββfld) | |
32 | cndrng 21258 | . . . . . 6 β’ βfld β DivRing | |
33 | 21, 31, 32 | drngui 20583 | . . . . 5 β’ (β β {0}) = (Unitββfld) |
34 | eqid 2724 | . . . . 5 β’ (invrββfld) = (invrββfld) | |
35 | 33, 16, 34 | invrfval 20281 | . . . 4 β’ (invrββfld) = (invgβπ) |
36 | 24, 30, 35 | issubg2 19058 | . . 3 β’ (π β Grp β (π΄ β (SubGrpβπ) β (π΄ β (β β {0}) β§ π΄ β β β§ βπ₯ β π΄ (βπ¦ β π΄ (π₯ Β· π¦) β π΄ β§ ((invrββfld)βπ₯) β π΄)))) |
37 | 17, 18, 36 | mp2b 10 | . 2 β’ (π΄ β (SubGrpβπ) β (π΄ β (β β {0}) β§ π΄ β β β§ βπ₯ β π΄ (βπ¦ β π΄ (π₯ Β· π¦) β π΄ β§ ((invrββfld)βπ₯) β π΄))) |
38 | 5, 7, 15, 37 | mpbir3an 1338 | 1 β’ π΄ β (SubGrpβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 βwral 3053 Vcvv 3466 β cdif 3937 β wss 3940 β c0 4314 {csn 4620 βcfv 6533 (class class class)co 7401 βcc 11104 0cc0 11106 1c1 11107 Β· cmul 11111 / cdiv 11868 Basecbs 17143 βΎs cress 17172 +gcplusg 17196 Grpcgrp 18853 SubGrpcsubg 19037 Abelcabl 19691 mulGrpcmgp 20029 invrcinvr 20279 βfldccnfld 21228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-grp 18856 df-minusg 18857 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-drng 20579 df-cnfld 21229 |
This theorem is referenced by: rpmsubg 21293 cnmsgnsubg 21438 |
Copyright terms: Public domain | W3C validator |