MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmsubglem Structured version   Visualization version   GIF version

Theorem cnmsubglem 20229
Description: Lemma for rpmsubg 20230 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
cnmgpabl.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
cnmsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnmsubglem.2 (𝑥𝐴𝑥 ≠ 0)
cnmsubglem.3 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
cnmsubglem.4 1 ∈ 𝐴
cnmsubglem.5 (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)
Assertion
Ref Expression
cnmsubglem 𝐴 ∈ (SubGrp‘𝑀)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑀,𝑦

Proof of Theorem cnmsubglem
StepHypRef Expression
1 cnmsubglem.1 . . . 4 (𝑥𝐴𝑥 ∈ ℂ)
2 cnmsubglem.2 . . . 4 (𝑥𝐴𝑥 ≠ 0)
3 eldifsn 4677 . . . 4 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
41, 2, 3sylanbrc 586 . . 3 (𝑥𝐴𝑥 ∈ (ℂ ∖ {0}))
54ssriv 3896 . 2 𝐴 ⊆ (ℂ ∖ {0})
6 cnmsubglem.4 . . 3 1 ∈ 𝐴
76ne0ii 4236 . 2 𝐴 ≠ ∅
8 cnmsubglem.3 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
98ralrimiva 3113 . . . 4 (𝑥𝐴 → ∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
10 cnfldinv 20197 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
111, 2, 10syl2anc 587 . . . . 5 (𝑥𝐴 → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
12 cnmsubglem.5 . . . . 5 (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)
1311, 12eqeltrd 2852 . . . 4 (𝑥𝐴 → ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
149, 13jca 515 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))
1514rgen 3080 . 2 𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
16 cnmgpabl.m . . . 4 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1716cnmgpabl 20227 . . 3 𝑀 ∈ Abel
18 ablgrp 18978 . . 3 (𝑀 ∈ Abel → 𝑀 ∈ Grp)
19 difss 4037 . . . . 5 (ℂ ∖ {0}) ⊆ ℂ
20 eqid 2758 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
21 cnfldbas 20170 . . . . . . 7 ℂ = (Base‘ℂfld)
2220, 21mgpbas 19313 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
2316, 22ressbas2 16613 . . . . 5 ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑀))
2419, 23ax-mp 5 . . . 4 (ℂ ∖ {0}) = (Base‘𝑀)
25 cnex 10656 . . . . 5 ℂ ∈ V
26 difexg 5197 . . . . 5 (ℂ ∈ V → (ℂ ∖ {0}) ∈ V)
27 cnfldmul 20172 . . . . . . 7 · = (.r‘ℂfld)
2820, 27mgpplusg 19311 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
2916, 28ressplusg 16670 . . . . 5 ((ℂ ∖ {0}) ∈ V → · = (+g𝑀))
3025, 26, 29mp2b 10 . . . 4 · = (+g𝑀)
31 cnfld0 20190 . . . . . 6 0 = (0g‘ℂfld)
32 cndrng 20195 . . . . . 6 fld ∈ DivRing
3321, 31, 32drngui 19576 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
34 eqid 2758 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
3533, 16, 34invrfval 19494 . . . 4 (invr‘ℂfld) = (invg𝑀)
3624, 30, 35issubg2 18361 . . 3 (𝑀 ∈ Grp → (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))))
3717, 18, 36mp2b 10 . 2 (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)))
385, 7, 15, 37mpbir3an 1338 1 𝐴 ∈ (SubGrp‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  Vcvv 3409  cdif 3855  wss 3858  c0 4225  {csn 4522  cfv 6335  (class class class)co 7150  cc 10573  0cc0 10575  1c1 10576   · cmul 10580   / cdiv 11335  Basecbs 16541  s cress 16542  +gcplusg 16623  Grpcgrp 18169  SubGrpcsubg 18340  Abelcabl 18974  mulGrpcmgp 19307  invrcinvr 19492  fldccnfld 20166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-subg 18343  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-invr 19493  df-dvr 19504  df-drng 19572  df-cnfld 20167
This theorem is referenced by:  rpmsubg  20230  cnmsgnsubg  20342
  Copyright terms: Public domain W3C validator