MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmsubglem Structured version   Visualization version   GIF version

Theorem cnmsubglem 21354
Description: Lemma for rpmsubg 21355 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
cnmgpabl.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
cnmsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnmsubglem.2 (𝑥𝐴𝑥 ≠ 0)
cnmsubglem.3 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
cnmsubglem.4 1 ∈ 𝐴
cnmsubglem.5 (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)
Assertion
Ref Expression
cnmsubglem 𝐴 ∈ (SubGrp‘𝑀)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑀,𝑦

Proof of Theorem cnmsubglem
StepHypRef Expression
1 cnmsubglem.1 . . . 4 (𝑥𝐴𝑥 ∈ ℂ)
2 cnmsubglem.2 . . . 4 (𝑥𝐴𝑥 ≠ 0)
3 eldifsn 4753 . . . 4 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
41, 2, 3sylanbrc 583 . . 3 (𝑥𝐴𝑥 ∈ (ℂ ∖ {0}))
54ssriv 3953 . 2 𝐴 ⊆ (ℂ ∖ {0})
6 cnmsubglem.4 . . 3 1 ∈ 𝐴
76ne0ii 4310 . 2 𝐴 ≠ ∅
8 cnmsubglem.3 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
98ralrimiva 3126 . . . 4 (𝑥𝐴 → ∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
10 cnfldinv 21321 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
111, 2, 10syl2anc 584 . . . . 5 (𝑥𝐴 → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
12 cnmsubglem.5 . . . . 5 (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)
1311, 12eqeltrd 2829 . . . 4 (𝑥𝐴 → ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
149, 13jca 511 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))
1514rgen 3047 . 2 𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
16 cnmgpabl.m . . . 4 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1716cnmgpabl 21352 . . 3 𝑀 ∈ Abel
18 ablgrp 19722 . . 3 (𝑀 ∈ Abel → 𝑀 ∈ Grp)
19 difss 4102 . . . . 5 (ℂ ∖ {0}) ⊆ ℂ
20 eqid 2730 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
21 cnfldbas 21275 . . . . . . 7 ℂ = (Base‘ℂfld)
2220, 21mgpbas 20061 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
2316, 22ressbas2 17215 . . . . 5 ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑀))
2419, 23ax-mp 5 . . . 4 (ℂ ∖ {0}) = (Base‘𝑀)
25 cnex 11156 . . . . 5 ℂ ∈ V
26 difexg 5287 . . . . 5 (ℂ ∈ V → (ℂ ∖ {0}) ∈ V)
27 cnfldmul 21279 . . . . . . 7 · = (.r‘ℂfld)
2820, 27mgpplusg 20060 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
2916, 28ressplusg 17261 . . . . 5 ((ℂ ∖ {0}) ∈ V → · = (+g𝑀))
3025, 26, 29mp2b 10 . . . 4 · = (+g𝑀)
31 cnfld0 21311 . . . . . 6 0 = (0g‘ℂfld)
32 cndrng 21317 . . . . . 6 fld ∈ DivRing
3321, 31, 32drngui 20651 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
34 eqid 2730 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
3533, 16, 34invrfval 20305 . . . 4 (invr‘ℂfld) = (invg𝑀)
3624, 30, 35issubg2 19080 . . 3 (𝑀 ∈ Grp → (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))))
3717, 18, 36mp2b 10 . 2 (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)))
385, 7, 15, 37mpbir3an 1342 1 𝐴 ∈ (SubGrp‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cdif 3914  wss 3917  c0 4299  {csn 4592  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   · cmul 11080   / cdiv 11842  Basecbs 17186  s cress 17207  +gcplusg 17227  Grpcgrp 18872  SubGrpcsubg 19059  Abelcabl 19718  mulGrpcmgp 20056  invrcinvr 20303  fldccnfld 21271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-cnfld 21272
This theorem is referenced by:  rpmsubg  21355  cnmsgnsubg  21493
  Copyright terms: Public domain W3C validator