Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmsubglem | Structured version Visualization version GIF version |
Description: Lemma for rpmsubg 20643 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
cnmgpabl.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
cnmsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
cnmsubglem.2 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) |
cnmsubglem.3 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
cnmsubglem.4 | ⊢ 1 ∈ 𝐴 |
cnmsubglem.5 | ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) |
Ref | Expression |
---|---|
cnmsubglem | ⊢ 𝐴 ∈ (SubGrp‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmsubglem.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
2 | cnmsubglem.2 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) | |
3 | eldifsn 4725 | . . . 4 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
4 | 1, 2, 3 | sylanbrc 582 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (ℂ ∖ {0})) |
5 | 4 | ssriv 3929 | . 2 ⊢ 𝐴 ⊆ (ℂ ∖ {0}) |
6 | cnmsubglem.4 | . . 3 ⊢ 1 ∈ 𝐴 | |
7 | 6 | ne0ii 4276 | . 2 ⊢ 𝐴 ≠ ∅ |
8 | cnmsubglem.3 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) | |
9 | 8 | ralrimiva 3109 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
10 | cnfldinv 20610 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) | |
11 | 1, 2, 10 | syl2anc 583 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
12 | cnmsubglem.5 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) | |
13 | 11, 12 | eqeltrd 2840 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
14 | 9, 13 | jca 511 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)) |
15 | 14 | rgen 3075 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
16 | cnmgpabl.m | . . . 4 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
17 | 16 | cnmgpabl 20640 | . . 3 ⊢ 𝑀 ∈ Abel |
18 | ablgrp 19372 | . . 3 ⊢ (𝑀 ∈ Abel → 𝑀 ∈ Grp) | |
19 | difss 4070 | . . . . 5 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
20 | eqid 2739 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
21 | cnfldbas 20582 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
22 | 20, 21 | mgpbas 19707 | . . . . . 6 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
23 | 16, 22 | ressbas2 16930 | . . . . 5 ⊢ ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑀)) |
24 | 19, 23 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) = (Base‘𝑀) |
25 | cnex 10936 | . . . . 5 ⊢ ℂ ∈ V | |
26 | difexg 5254 | . . . . 5 ⊢ (ℂ ∈ V → (ℂ ∖ {0}) ∈ V) | |
27 | cnfldmul 20584 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
28 | 20, 27 | mgpplusg 19705 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
29 | 16, 28 | ressplusg 16981 | . . . . 5 ⊢ ((ℂ ∖ {0}) ∈ V → · = (+g‘𝑀)) |
30 | 25, 26, 29 | mp2b 10 | . . . 4 ⊢ · = (+g‘𝑀) |
31 | cnfld0 20603 | . . . . . 6 ⊢ 0 = (0g‘ℂfld) | |
32 | cndrng 20608 | . . . . . 6 ⊢ ℂfld ∈ DivRing | |
33 | 21, 31, 32 | drngui 19978 | . . . . 5 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
34 | eqid 2739 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
35 | 33, 16, 34 | invrfval 19896 | . . . 4 ⊢ (invr‘ℂfld) = (invg‘𝑀) |
36 | 24, 30, 35 | issubg2 18751 | . . 3 ⊢ (𝑀 ∈ Grp → (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)))) |
37 | 17, 18, 36 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))) |
38 | 5, 7, 15, 37 | mpbir3an 1339 | 1 ⊢ 𝐴 ∈ (SubGrp‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 Vcvv 3430 ∖ cdif 3888 ⊆ wss 3891 ∅c0 4261 {csn 4566 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 · cmul 10860 / cdiv 11615 Basecbs 16893 ↾s cress 16922 +gcplusg 16943 Grpcgrp 18558 SubGrpcsubg 18730 Abelcabl 19368 mulGrpcmgp 19701 invrcinvr 19894 ℂfldccnfld 20578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-subg 18733 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-dvr 19906 df-drng 19974 df-cnfld 20579 |
This theorem is referenced by: rpmsubg 20643 cnmsgnsubg 20763 |
Copyright terms: Public domain | W3C validator |