| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmsubglem | Structured version Visualization version GIF version | ||
| Description: Lemma for rpmsubg 21373 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| Ref | Expression |
|---|---|
| cnmgpabl.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| cnmsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
| cnmsubglem.2 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) |
| cnmsubglem.3 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
| cnmsubglem.4 | ⊢ 1 ∈ 𝐴 |
| cnmsubglem.5 | ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnmsubglem | ⊢ 𝐴 ∈ (SubGrp‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsubglem.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
| 2 | cnmsubglem.2 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) | |
| 3 | eldifsn 4746 | . . . 4 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (ℂ ∖ {0})) |
| 5 | 4 | ssriv 3947 | . 2 ⊢ 𝐴 ⊆ (ℂ ∖ {0}) |
| 6 | cnmsubglem.4 | . . 3 ⊢ 1 ∈ 𝐴 | |
| 7 | 6 | ne0ii 4303 | . 2 ⊢ 𝐴 ≠ ∅ |
| 8 | cnmsubglem.3 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) | |
| 9 | 8 | ralrimiva 3125 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
| 10 | cnfldinv 21344 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) | |
| 11 | 1, 2, 10 | syl2anc 584 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
| 12 | cnmsubglem.5 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) | |
| 13 | 11, 12 | eqeltrd 2828 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
| 14 | 9, 13 | jca 511 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)) |
| 15 | 14 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
| 16 | cnmgpabl.m | . . . 4 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 17 | 16 | cnmgpabl 21370 | . . 3 ⊢ 𝑀 ∈ Abel |
| 18 | ablgrp 19699 | . . 3 ⊢ (𝑀 ∈ Abel → 𝑀 ∈ Grp) | |
| 19 | difss 4095 | . . . . 5 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 21 | cnfldbas 21300 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 22 | 20, 21 | mgpbas 20065 | . . . . . 6 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 23 | 16, 22 | ressbas2 17184 | . . . . 5 ⊢ ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑀)) |
| 24 | 19, 23 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) = (Base‘𝑀) |
| 25 | cnex 11125 | . . . . 5 ⊢ ℂ ∈ V | |
| 26 | difexg 5279 | . . . . 5 ⊢ (ℂ ∈ V → (ℂ ∖ {0}) ∈ V) | |
| 27 | cnfldmul 21304 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
| 28 | 20, 27 | mgpplusg 20064 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 29 | 16, 28 | ressplusg 17230 | . . . . 5 ⊢ ((ℂ ∖ {0}) ∈ V → · = (+g‘𝑀)) |
| 30 | 25, 26, 29 | mp2b 10 | . . . 4 ⊢ · = (+g‘𝑀) |
| 31 | cnfld0 21334 | . . . . . 6 ⊢ 0 = (0g‘ℂfld) | |
| 32 | cndrng 21340 | . . . . . 6 ⊢ ℂfld ∈ DivRing | |
| 33 | 21, 31, 32 | drngui 20655 | . . . . 5 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
| 34 | eqid 2729 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 35 | 33, 16, 34 | invrfval 20309 | . . . 4 ⊢ (invr‘ℂfld) = (invg‘𝑀) |
| 36 | 24, 30, 35 | issubg2 19055 | . . 3 ⊢ (𝑀 ∈ Grp → (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)))) |
| 37 | 17, 18, 36 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))) |
| 38 | 5, 7, 15, 37 | mpbir3an 1342 | 1 ⊢ 𝐴 ∈ (SubGrp‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 ∅c0 4292 {csn 4585 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 · cmul 11049 / cdiv 11811 Basecbs 17155 ↾s cress 17176 +gcplusg 17196 Grpcgrp 18847 SubGrpcsubg 19034 Abelcabl 19695 mulGrpcmgp 20060 invrcinvr 20307 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-subg 19037 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-drng 20651 df-cnfld 21297 |
| This theorem is referenced by: rpmsubg 21373 cnmsgnsubg 21519 |
| Copyright terms: Public domain | W3C validator |