Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmsubglem | Structured version Visualization version GIF version |
Description: Lemma for rpmsubg 20742 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
cnmgpabl.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
cnmsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
cnmsubglem.2 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) |
cnmsubglem.3 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
cnmsubglem.4 | ⊢ 1 ∈ 𝐴 |
cnmsubglem.5 | ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) |
Ref | Expression |
---|---|
cnmsubglem | ⊢ 𝐴 ∈ (SubGrp‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmsubglem.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
2 | cnmsubglem.2 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) | |
3 | eldifsn 4731 | . . . 4 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
4 | 1, 2, 3 | sylanbrc 583 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (ℂ ∖ {0})) |
5 | 4 | ssriv 3934 | . 2 ⊢ 𝐴 ⊆ (ℂ ∖ {0}) |
6 | cnmsubglem.4 | . . 3 ⊢ 1 ∈ 𝐴 | |
7 | 6 | ne0ii 4281 | . 2 ⊢ 𝐴 ≠ ∅ |
8 | cnmsubglem.3 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) | |
9 | 8 | ralrimiva 3139 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
10 | cnfldinv 20709 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) | |
11 | 1, 2, 10 | syl2anc 584 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
12 | cnmsubglem.5 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) | |
13 | 11, 12 | eqeltrd 2837 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
14 | 9, 13 | jca 512 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)) |
15 | 14 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
16 | cnmgpabl.m | . . . 4 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
17 | 16 | cnmgpabl 20739 | . . 3 ⊢ 𝑀 ∈ Abel |
18 | ablgrp 19463 | . . 3 ⊢ (𝑀 ∈ Abel → 𝑀 ∈ Grp) | |
19 | difss 4076 | . . . . 5 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
20 | eqid 2736 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
21 | cnfldbas 20681 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
22 | 20, 21 | mgpbas 19798 | . . . . . 6 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
23 | 16, 22 | ressbas2 17023 | . . . . 5 ⊢ ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑀)) |
24 | 19, 23 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) = (Base‘𝑀) |
25 | cnex 11031 | . . . . 5 ⊢ ℂ ∈ V | |
26 | difexg 5265 | . . . . 5 ⊢ (ℂ ∈ V → (ℂ ∖ {0}) ∈ V) | |
27 | cnfldmul 20683 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
28 | 20, 27 | mgpplusg 19796 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
29 | 16, 28 | ressplusg 17074 | . . . . 5 ⊢ ((ℂ ∖ {0}) ∈ V → · = (+g‘𝑀)) |
30 | 25, 26, 29 | mp2b 10 | . . . 4 ⊢ · = (+g‘𝑀) |
31 | cnfld0 20702 | . . . . . 6 ⊢ 0 = (0g‘ℂfld) | |
32 | cndrng 20707 | . . . . . 6 ⊢ ℂfld ∈ DivRing | |
33 | 21, 31, 32 | drngui 20073 | . . . . 5 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
34 | eqid 2736 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
35 | 33, 16, 34 | invrfval 19987 | . . . 4 ⊢ (invr‘ℂfld) = (invg‘𝑀) |
36 | 24, 30, 35 | issubg2 18843 | . . 3 ⊢ (𝑀 ∈ Grp → (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)))) |
37 | 17, 18, 36 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))) |
38 | 5, 7, 15, 37 | mpbir3an 1340 | 1 ⊢ 𝐴 ∈ (SubGrp‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 Vcvv 3440 ∖ cdif 3893 ⊆ wss 3896 ∅c0 4266 {csn 4570 ‘cfv 6465 (class class class)co 7316 ℂcc 10948 0cc0 10950 1c1 10951 · cmul 10955 / cdiv 11711 Basecbs 16986 ↾s cress 17015 +gcplusg 17036 Grpcgrp 18650 SubGrpcsubg 18822 Abelcabl 19459 mulGrpcmgp 19792 invrcinvr 19985 ℂfldccnfld 20677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-addf 11029 ax-mulf 11030 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-tpos 8090 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-fz 13319 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-mulr 17050 df-starv 17051 df-tset 17055 df-ple 17056 df-ds 17058 df-unif 17059 df-0g 17226 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-grp 18653 df-minusg 18654 df-subg 18825 df-cmn 19460 df-abl 19461 df-mgp 19793 df-ur 19810 df-ring 19857 df-cring 19858 df-oppr 19934 df-dvdsr 19955 df-unit 19956 df-invr 19986 df-dvr 19997 df-drng 20069 df-cnfld 20678 |
This theorem is referenced by: rpmsubg 20742 cnmsgnsubg 20862 |
Copyright terms: Public domain | W3C validator |