| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmsubglem | Structured version Visualization version GIF version | ||
| Description: Lemma for rpmsubg 21338 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| Ref | Expression |
|---|---|
| cnmgpabl.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| cnmsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
| cnmsubglem.2 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) |
| cnmsubglem.3 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
| cnmsubglem.4 | ⊢ 1 ∈ 𝐴 |
| cnmsubglem.5 | ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnmsubglem | ⊢ 𝐴 ∈ (SubGrp‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsubglem.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
| 2 | cnmsubglem.2 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) | |
| 3 | eldifsn 4737 | . . . 4 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (ℂ ∖ {0})) |
| 5 | 4 | ssriv 3939 | . 2 ⊢ 𝐴 ⊆ (ℂ ∖ {0}) |
| 6 | cnmsubglem.4 | . . 3 ⊢ 1 ∈ 𝐴 | |
| 7 | 6 | ne0ii 4295 | . 2 ⊢ 𝐴 ≠ ∅ |
| 8 | cnmsubglem.3 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) | |
| 9 | 8 | ralrimiva 3121 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
| 10 | cnfldinv 21309 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) | |
| 11 | 1, 2, 10 | syl2anc 584 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
| 12 | cnmsubglem.5 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) | |
| 13 | 11, 12 | eqeltrd 2828 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
| 14 | 9, 13 | jca 511 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)) |
| 15 | 14 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
| 16 | cnmgpabl.m | . . . 4 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 17 | 16 | cnmgpabl 21335 | . . 3 ⊢ 𝑀 ∈ Abel |
| 18 | ablgrp 19664 | . . 3 ⊢ (𝑀 ∈ Abel → 𝑀 ∈ Grp) | |
| 19 | difss 4087 | . . . . 5 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 21 | cnfldbas 21265 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 22 | 20, 21 | mgpbas 20030 | . . . . . 6 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 23 | 16, 22 | ressbas2 17149 | . . . . 5 ⊢ ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑀)) |
| 24 | 19, 23 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) = (Base‘𝑀) |
| 25 | cnex 11090 | . . . . 5 ⊢ ℂ ∈ V | |
| 26 | difexg 5268 | . . . . 5 ⊢ (ℂ ∈ V → (ℂ ∖ {0}) ∈ V) | |
| 27 | cnfldmul 21269 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
| 28 | 20, 27 | mgpplusg 20029 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 29 | 16, 28 | ressplusg 17195 | . . . . 5 ⊢ ((ℂ ∖ {0}) ∈ V → · = (+g‘𝑀)) |
| 30 | 25, 26, 29 | mp2b 10 | . . . 4 ⊢ · = (+g‘𝑀) |
| 31 | cnfld0 21299 | . . . . . 6 ⊢ 0 = (0g‘ℂfld) | |
| 32 | cndrng 21305 | . . . . . 6 ⊢ ℂfld ∈ DivRing | |
| 33 | 21, 31, 32 | drngui 20620 | . . . . 5 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
| 34 | eqid 2729 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 35 | 33, 16, 34 | invrfval 20274 | . . . 4 ⊢ (invr‘ℂfld) = (invg‘𝑀) |
| 36 | 24, 30, 35 | issubg2 19020 | . . 3 ⊢ (𝑀 ∈ Grp → (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)))) |
| 37 | 17, 18, 36 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))) |
| 38 | 5, 7, 15, 37 | mpbir3an 1342 | 1 ⊢ 𝐴 ∈ (SubGrp‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3436 ∖ cdif 3900 ⊆ wss 3903 ∅c0 4284 {csn 4577 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 · cmul 11014 / cdiv 11777 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 Grpcgrp 18812 SubGrpcsubg 18999 Abelcabl 19660 mulGrpcmgp 20025 invrcinvr 20272 ℂfldccnfld 21261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-subg 19002 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-drng 20616 df-cnfld 21262 |
| This theorem is referenced by: rpmsubg 21338 cnmsgnsubg 21484 |
| Copyright terms: Public domain | W3C validator |