Step | Hyp | Ref
| Expression |
1 | | neg1cn 12322 |
. . . 4
β’ -1 β
β |
2 | | 2rp 12975 |
. . . . . 6
β’ 2 β
β+ |
3 | | nnrp 12981 |
. . . . . 6
β’ (π β β β π β
β+) |
4 | | rpdivcl 12995 |
. . . . . 6
β’ ((2
β β+ β§ π β β+) β (2 /
π) β
β+) |
5 | 2, 3, 4 | sylancr 586 |
. . . . 5
β’ (π β β β (2 /
π) β
β+) |
6 | 5 | rpcnd 13014 |
. . . 4
β’ (π β β β (2 /
π) β
β) |
7 | | cxpcl 26512 |
. . . 4
β’ ((-1
β β β§ (2 / π) β β) β
(-1βπ(2 / π)) β β) |
8 | 1, 6, 7 | sylancr 586 |
. . 3
β’ (π β β β
(-1βπ(2 / π)) β β) |
9 | 1 | a1i 11 |
. . . 4
β’ (π β β β -1 β
β) |
10 | | neg1ne0 12324 |
. . . . 5
β’ -1 β
0 |
11 | 10 | a1i 11 |
. . . 4
β’ (π β β β -1 β
0) |
12 | 9, 11, 6 | cxpne0d 26551 |
. . 3
β’ (π β β β
(-1βπ(2 / π)) β 0) |
13 | | eldifsn 4782 |
. . 3
β’
((-1βπ(2 / π)) β (β β {0}) β
((-1βπ(2 / π)) β β β§
(-1βπ(2 / π)) β 0)) |
14 | 8, 12, 13 | sylanbrc 582 |
. 2
β’ (π β β β
(-1βπ(2 / π)) β (β β
{0})) |
15 | 1 | a1i 11 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β0)
β -1 β β) |
16 | 10 | a1i 11 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β0)
β -1 β 0) |
17 | | nn0cn 12478 |
. . . . . . . . . 10
β’ (π₯ β β0
β π₯ β
β) |
18 | | mulcl 11189 |
. . . . . . . . . 10
β’ (((2 /
π) β β β§
π₯ β β) β
((2 / π) Β· π₯) β
β) |
19 | 6, 17, 18 | syl2an 595 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β0)
β ((2 / π) Β·
π₯) β
β) |
20 | 15, 16, 19 | cxpefd 26550 |
. . . . . . . 8
β’ ((π β β β§ π₯ β β0)
β (-1βπ((2 / π) Β· π₯)) = (expβ(((2 / π) Β· π₯) Β· (logβ-1)))) |
21 | 20 | eqeq1d 2726 |
. . . . . . 7
β’ ((π β β β§ π₯ β β0)
β ((-1βπ((2 / π) Β· π₯)) = 1 β (expβ(((2 / π) Β· π₯) Β· (logβ-1))) =
1)) |
22 | | logcl 26407 |
. . . . . . . . . 10
β’ ((-1
β β β§ -1 β 0) β (logβ-1) β
β) |
23 | 1, 10, 22 | mp2an 689 |
. . . . . . . . 9
β’
(logβ-1) β β |
24 | | mulcl 11189 |
. . . . . . . . 9
β’ ((((2 /
π) Β· π₯) β β β§
(logβ-1) β β) β (((2 / π) Β· π₯) Β· (logβ-1)) β
β) |
25 | 19, 23, 24 | sylancl 585 |
. . . . . . . 8
β’ ((π β β β§ π₯ β β0)
β (((2 / π) Β·
π₯) Β· (logβ-1))
β β) |
26 | | efeq1 26367 |
. . . . . . . 8
β’ ((((2 /
π) Β· π₯) Β· (logβ-1))
β β β ((expβ(((2 / π) Β· π₯) Β· (logβ-1))) = 1 β ((((2
/ π) Β· π₯) Β· (logβ-1)) / (i
Β· (2 Β· Ο))) β β€)) |
27 | 25, 26 | syl 17 |
. . . . . . 7
β’ ((π β β β§ π₯ β β0)
β ((expβ(((2 / π) Β· π₯) Β· (logβ-1))) = 1 β ((((2
/ π) Β· π₯) Β· (logβ-1)) / (i
Β· (2 Β· Ο))) β β€)) |
28 | | 2cn 12283 |
. . . . . . . . . . . . . 14
β’ 2 β
β |
29 | 28 | a1i 11 |
. . . . . . . . . . . . 13
β’ ((π β β β§ π₯ β β0)
β 2 β β) |
30 | | nncn 12216 |
. . . . . . . . . . . . . 14
β’ (π β β β π β
β) |
31 | 30 | adantr 480 |
. . . . . . . . . . . . 13
β’ ((π β β β§ π₯ β β0)
β π β
β) |
32 | 17 | adantl 481 |
. . . . . . . . . . . . 13
β’ ((π β β β§ π₯ β β0)
β π₯ β
β) |
33 | | nnne0 12242 |
. . . . . . . . . . . . . 14
β’ (π β β β π β 0) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . 13
β’ ((π β β β§ π₯ β β0)
β π β
0) |
35 | 29, 31, 32, 34 | div13d 12010 |
. . . . . . . . . . . 12
β’ ((π β β β§ π₯ β β0)
β ((2 / π) Β·
π₯) = ((π₯ / π) Β· 2)) |
36 | | logm1 26427 |
. . . . . . . . . . . . 13
β’
(logβ-1) = (i Β· Ο) |
37 | 36 | a1i 11 |
. . . . . . . . . . . 12
β’ ((π β β β§ π₯ β β0)
β (logβ-1) = (i Β· Ο)) |
38 | 35, 37 | oveq12d 7419 |
. . . . . . . . . . 11
β’ ((π β β β§ π₯ β β0)
β (((2 / π) Β·
π₯) Β· (logβ-1))
= (((π₯ / π) Β· 2) Β· (i Β·
Ο))) |
39 | 32, 31, 34 | divcld 11986 |
. . . . . . . . . . . 12
β’ ((π β β β§ π₯ β β0)
β (π₯ / π) β
β) |
40 | | ax-icn 11164 |
. . . . . . . . . . . . . 14
β’ i β
β |
41 | | picn 26299 |
. . . . . . . . . . . . . 14
β’ Ο
β β |
42 | 40, 41 | mulcli 11217 |
. . . . . . . . . . . . 13
β’ (i
Β· Ο) β β |
43 | 42 | a1i 11 |
. . . . . . . . . . . 12
β’ ((π β β β§ π₯ β β0)
β (i Β· Ο) β β) |
44 | 39, 29, 43 | mulassd 11233 |
. . . . . . . . . . 11
β’ ((π β β β§ π₯ β β0)
β (((π₯ / π) Β· 2) Β· (i
Β· Ο)) = ((π₯ /
π) Β· (2 Β· (i
Β· Ο)))) |
45 | 40 | a1i 11 |
. . . . . . . . . . . . 13
β’ ((π β β β§ π₯ β β0)
β i β β) |
46 | 41 | a1i 11 |
. . . . . . . . . . . . 13
β’ ((π β β β§ π₯ β β0)
β Ο β β) |
47 | 29, 45, 46 | mul12d 11419 |
. . . . . . . . . . . 12
β’ ((π β β β§ π₯ β β0)
β (2 Β· (i Β· Ο)) = (i Β· (2 Β·
Ο))) |
48 | 47 | oveq2d 7417 |
. . . . . . . . . . 11
β’ ((π β β β§ π₯ β β0)
β ((π₯ / π) Β· (2 Β· (i
Β· Ο))) = ((π₯ /
π) Β· (i Β· (2
Β· Ο)))) |
49 | 38, 44, 48 | 3eqtrd 2768 |
. . . . . . . . . 10
β’ ((π β β β§ π₯ β β0)
β (((2 / π) Β·
π₯) Β· (logβ-1))
= ((π₯ / π) Β· (i Β· (2 Β·
Ο)))) |
50 | 49 | oveq1d 7416 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β0)
β ((((2 / π) Β·
π₯) Β· (logβ-1))
/ (i Β· (2 Β· Ο))) = (((π₯ / π) Β· (i Β· (2 Β· Ο))) /
(i Β· (2 Β· Ο)))) |
51 | 28, 41 | mulcli 11217 |
. . . . . . . . . . . 12
β’ (2
Β· Ο) β β |
52 | 40, 51 | mulcli 11217 |
. . . . . . . . . . 11
β’ (i
Β· (2 Β· Ο)) β β |
53 | 52 | a1i 11 |
. . . . . . . . . 10
β’ ((π β β β§ π₯ β β0)
β (i Β· (2 Β· Ο)) β β) |
54 | | ine0 11645 |
. . . . . . . . . . . 12
β’ i β
0 |
55 | | 2ne0 12312 |
. . . . . . . . . . . . 13
β’ 2 β
0 |
56 | | pire 26298 |
. . . . . . . . . . . . . 14
β’ Ο
β β |
57 | | pipos 26300 |
. . . . . . . . . . . . . 14
β’ 0 <
Ο |
58 | 56, 57 | gt0ne0ii 11746 |
. . . . . . . . . . . . 13
β’ Ο β
0 |
59 | 28, 41, 55, 58 | mulne0i 11853 |
. . . . . . . . . . . 12
β’ (2
Β· Ο) β 0 |
60 | 40, 51, 54, 59 | mulne0i 11853 |
. . . . . . . . . . 11
β’ (i
Β· (2 Β· Ο)) β 0 |
61 | 60 | a1i 11 |
. . . . . . . . . 10
β’ ((π β β β§ π₯ β β0)
β (i Β· (2 Β· Ο)) β 0) |
62 | 39, 53, 61 | divcan4d 11992 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β0)
β (((π₯ / π) Β· (i Β· (2
Β· Ο))) / (i Β· (2 Β· Ο))) = (π₯ / π)) |
63 | 50, 62 | eqtrd 2764 |
. . . . . . . 8
β’ ((π β β β§ π₯ β β0)
β ((((2 / π) Β·
π₯) Β· (logβ-1))
/ (i Β· (2 Β· Ο))) = (π₯ / π)) |
64 | 63 | eleq1d 2810 |
. . . . . . 7
β’ ((π β β β§ π₯ β β0)
β (((((2 / π) Β·
π₯) Β· (logβ-1))
/ (i Β· (2 Β· Ο))) β β€ β (π₯ / π) β β€)) |
65 | 21, 27, 64 | 3bitrd 305 |
. . . . . 6
β’ ((π β β β§ π₯ β β0)
β ((-1βπ((2 / π) Β· π₯)) = 1 β (π₯ / π) β β€)) |
66 | 6 | adantr 480 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β0)
β (2 / π) β
β) |
67 | | simpr 484 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β0)
β π₯ β
β0) |
68 | 15, 66, 67 | cxpmul2d 26547 |
. . . . . . . 8
β’ ((π β β β§ π₯ β β0)
β (-1βπ((2 / π) Β· π₯)) = ((-1βπ(2 / π))βπ₯)) |
69 | | cnfldexp 21257 |
. . . . . . . . 9
β’
(((-1βπ(2 / π)) β β β§ π₯ β β0) β (π₯(.gβ(mulGrpββfld))(-1βπ(2
/ π))) = ((-1βπ(2 / π))βπ₯)) |
70 | 8, 69 | sylan 579 |
. . . . . . . 8
β’ ((π β β β§ π₯ β β0)
β (π₯(.gβ(mulGrpββfld))(-1βπ(2
/ π))) = ((-1βπ(2 / π))βπ₯)) |
71 | | cnring 21246 |
. . . . . . . . . 10
β’
βfld β Ring |
72 | | cnfldbas 21227 |
. . . . . . . . . . . 12
β’ β =
(Baseββfld) |
73 | | cnfld0 21248 |
. . . . . . . . . . . 12
β’ 0 =
(0gββfld) |
74 | | cndrng 21253 |
. . . . . . . . . . . 12
β’
βfld β DivRing |
75 | 72, 73, 74 | drngui 20578 |
. . . . . . . . . . 11
β’ (β
β {0}) = (Unitββfld) |
76 | | eqid 2724 |
. . . . . . . . . . 11
β’
(mulGrpββfld) =
(mulGrpββfld) |
77 | 75, 76 | unitsubm 20273 |
. . . . . . . . . 10
β’
(βfld β Ring β (β β {0}) β
(SubMndβ(mulGrpββfld))) |
78 | 71, 77 | mp1i 13 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β0)
β (β β {0}) β
(SubMndβ(mulGrpββfld))) |
79 | 14 | adantr 480 |
. . . . . . . . 9
β’ ((π β β β§ π₯ β β0)
β (-1βπ(2 / π)) β (β β
{0})) |
80 | | eqid 2724 |
. . . . . . . . . 10
β’
(.gβ(mulGrpββfld)) =
(.gβ(mulGrpββfld)) |
81 | | proot1ex.g |
. . . . . . . . . 10
β’ πΊ =
((mulGrpββfld) βΎs (β β
{0})) |
82 | | eqid 2724 |
. . . . . . . . . 10
β’
(.gβπΊ) = (.gβπΊ) |
83 | 80, 81, 82 | submmulg 19030 |
. . . . . . . . 9
β’
(((β β {0}) β
(SubMndβ(mulGrpββfld)) β§ π₯ β β0 β§
(-1βπ(2 / π)) β (β β {0})) β
(π₯(.gβ(mulGrpββfld))(-1βπ(2
/ π))) = (π₯(.gβπΊ)(-1βπ(2 / π)))) |
84 | 78, 67, 79, 83 | syl3anc 1368 |
. . . . . . . 8
β’ ((π β β β§ π₯ β β0)
β (π₯(.gβ(mulGrpββfld))(-1βπ(2
/ π))) = (π₯(.gβπΊ)(-1βπ(2 / π)))) |
85 | 68, 70, 84 | 3eqtr2rd 2771 |
. . . . . . 7
β’ ((π β β β§ π₯ β β0)
β (π₯(.gβπΊ)(-1βπ(2 / π))) =
(-1βπ((2 / π) Β· π₯))) |
86 | 85 | eqeq1d 2726 |
. . . . . 6
β’ ((π β β β§ π₯ β β0)
β ((π₯(.gβπΊ)(-1βπ(2 / π))) = 1 β
(-1βπ((2 / π) Β· π₯)) = 1)) |
87 | | nnz 12575 |
. . . . . . . 8
β’ (π β β β π β
β€) |
88 | 87 | adantr 480 |
. . . . . . 7
β’ ((π β β β§ π₯ β β0)
β π β
β€) |
89 | | nn0z 12579 |
. . . . . . . 8
β’ (π₯ β β0
β π₯ β
β€) |
90 | 89 | adantl 481 |
. . . . . . 7
β’ ((π β β β§ π₯ β β0)
β π₯ β
β€) |
91 | | dvdsval2 16196 |
. . . . . . 7
β’ ((π β β€ β§ π β 0 β§ π₯ β β€) β (π β₯ π₯ β (π₯ / π) β β€)) |
92 | 88, 34, 90, 91 | syl3anc 1368 |
. . . . . 6
β’ ((π β β β§ π₯ β β0)
β (π β₯ π₯ β (π₯ / π) β β€)) |
93 | 65, 86, 92 | 3bitr4rd 312 |
. . . . 5
β’ ((π β β β§ π₯ β β0)
β (π β₯ π₯ β (π₯(.gβπΊ)(-1βπ(2 / π))) = 1)) |
94 | 93 | ralrimiva 3138 |
. . . 4
β’ (π β β β
βπ₯ β
β0 (π
β₯ π₯ β (π₯(.gβπΊ)(-1βπ(2
/ π))) =
1)) |
95 | 75, 81 | unitgrp 20270 |
. . . . . 6
β’
(βfld β Ring β πΊ β Grp) |
96 | 71, 95 | mp1i 13 |
. . . . 5
β’ (π β β β πΊ β Grp) |
97 | | nnnn0 12475 |
. . . . 5
β’ (π β β β π β
β0) |
98 | 75, 81 | unitgrpbas 20269 |
. . . . . 6
β’ (β
β {0}) = (BaseβπΊ) |
99 | | proot1ex.o |
. . . . . 6
β’ π = (odβπΊ) |
100 | | cnfld1 21249 |
. . . . . . . 8
β’ 1 =
(1rββfld) |
101 | 75, 81, 100 | unitgrpid 20272 |
. . . . . . 7
β’
(βfld β Ring β 1 = (0gβπΊ)) |
102 | 71, 101 | ax-mp 5 |
. . . . . 6
β’ 1 =
(0gβπΊ) |
103 | 98, 99, 82, 102 | odeq 19455 |
. . . . 5
β’ ((πΊ β Grp β§
(-1βπ(2 / π)) β (β β {0}) β§ π β β0)
β (π = (πβ(-1βπ(2 /
π))) β βπ₯ β β0
(π β₯ π₯ β (π₯(.gβπΊ)(-1βπ(2 / π))) = 1))) |
104 | 96, 14, 97, 103 | syl3anc 1368 |
. . . 4
β’ (π β β β (π = (πβ(-1βπ(2 /
π))) β βπ₯ β β0
(π β₯ π₯ β (π₯(.gβπΊ)(-1βπ(2 / π))) = 1))) |
105 | 94, 104 | mpbird 257 |
. . 3
β’ (π β β β π = (πβ(-1βπ(2 /
π)))) |
106 | 105 | eqcomd 2730 |
. 2
β’ (π β β β (πβ(-1βπ(2 /
π))) = π) |
107 | 98, 99 | odf 19442 |
. . . 4
β’ π:(β β
{0})βΆβ0 |
108 | | ffn 6707 |
. . . 4
β’ (π:(β β
{0})βΆβ0 β π Fn (β β {0})) |
109 | 107, 108 | ax-mp 5 |
. . 3
β’ π Fn (β β
{0}) |
110 | | fniniseg 7051 |
. . 3
β’ (π Fn (β β {0}) β
((-1βπ(2 / π)) β (β‘π β {π}) β ((-1βπ(2 /
π)) β (β β
{0}) β§ (πβ(-1βπ(2 /
π))) = π))) |
111 | 109, 110 | mp1i 13 |
. 2
β’ (π β β β
((-1βπ(2 / π)) β (β‘π β {π}) β ((-1βπ(2 /
π)) β (β β
{0}) β§ (πβ(-1βπ(2 /
π))) = π))) |
112 | 14, 106, 111 | mpbir2and 710 |
1
β’ (π β β β
(-1βπ(2 / π)) β (β‘π β {π})) |