Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1ex Structured version   Visualization version   GIF version

Theorem proot1ex 41514
Description: The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1ex.g 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
proot1ex.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
proot1ex (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))

Proof of Theorem proot1ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neg1cn 12267 . . . 4 -1 ∈ ℂ
2 2rp 12920 . . . . . 6 2 ∈ ℝ+
3 nnrp 12926 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
4 rpdivcl 12940 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 / 𝑁) ∈ ℝ+)
52, 3, 4sylancr 587 . . . . 5 (𝑁 ∈ ℕ → (2 / 𝑁) ∈ ℝ+)
65rpcnd 12959 . . . 4 (𝑁 ∈ ℕ → (2 / 𝑁) ∈ ℂ)
7 cxpcl 26029 . . . 4 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
81, 6, 7sylancr 587 . . 3 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
91a1i 11 . . . 4 (𝑁 ∈ ℕ → -1 ∈ ℂ)
10 neg1ne0 12269 . . . . 5 -1 ≠ 0
1110a1i 11 . . . 4 (𝑁 ∈ ℕ → -1 ≠ 0)
129, 11, 6cxpne0d 26068 . . 3 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ≠ 0)
13 eldifsn 4747 . . 3 ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0))
148, 12, 13sylanbrc 583 . 2 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}))
151a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → -1 ∈ ℂ)
1610a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → -1 ≠ 0)
17 nn0cn 12423 . . . . . . . . . 10 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
18 mulcl 11135 . . . . . . . . . 10 (((2 / 𝑁) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((2 / 𝑁) · 𝑥) ∈ ℂ)
196, 17, 18syl2an 596 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((2 / 𝑁) · 𝑥) ∈ ℂ)
2015, 16, 19cxpefd 26067 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐((2 / 𝑁) · 𝑥)) = (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))))
2120eqeq1d 2738 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1))
22 logcl 25924 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ -1 ≠ 0) → (log‘-1) ∈ ℂ)
231, 10, 22mp2an 690 . . . . . . . . 9 (log‘-1) ∈ ℂ
24 mulcl 11135 . . . . . . . . 9 ((((2 / 𝑁) · 𝑥) ∈ ℂ ∧ (log‘-1) ∈ ℂ) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ)
2519, 23, 24sylancl 586 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ)
26 efeq1 25884 . . . . . . . 8 ((((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ))
2725, 26syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ))
28 2cn 12228 . . . . . . . . . . . . . 14 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 2 ∈ ℂ)
30 nncn 12161 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3130adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℂ)
3217adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℂ)
33 nnne0 12187 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3433adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ≠ 0)
3529, 31, 32, 34div13d 11955 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((2 / 𝑁) · 𝑥) = ((𝑥 / 𝑁) · 2))
36 logm1 25944 . . . . . . . . . . . . 13 (log‘-1) = (i · π)
3736a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (log‘-1) = (i · π))
3835, 37oveq12d 7375 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) = (((𝑥 / 𝑁) · 2) · (i · π)))
3932, 31, 34divcld 11931 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥 / 𝑁) ∈ ℂ)
40 ax-icn 11110 . . . . . . . . . . . . . 14 i ∈ ℂ
41 picn 25816 . . . . . . . . . . . . . 14 π ∈ ℂ
4240, 41mulcli 11162 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
4342a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · π) ∈ ℂ)
4439, 29, 43mulassd 11178 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((𝑥 / 𝑁) · 2) · (i · π)) = ((𝑥 / 𝑁) · (2 · (i · π))))
4540a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → i ∈ ℂ)
4641a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → π ∈ ℂ)
4729, 45, 46mul12d 11364 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (2 · (i · π)) = (i · (2 · π)))
4847oveq2d 7373 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((𝑥 / 𝑁) · (2 · (i · π))) = ((𝑥 / 𝑁) · (i · (2 · π))))
4938, 44, 483eqtrd 2780 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) = ((𝑥 / 𝑁) · (i · (2 · π))))
5049oveq1d 7372 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) = (((𝑥 / 𝑁) · (i · (2 · π))) / (i · (2 · π))))
5128, 41mulcli 11162 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
5240, 51mulcli 11162 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
5352a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · (2 · π)) ∈ ℂ)
54 ine0 11590 . . . . . . . . . . . 12 i ≠ 0
55 2ne0 12257 . . . . . . . . . . . . 13 2 ≠ 0
56 pire 25815 . . . . . . . . . . . . . 14 π ∈ ℝ
57 pipos 25817 . . . . . . . . . . . . . 14 0 < π
5856, 57gt0ne0ii 11691 . . . . . . . . . . . . 13 π ≠ 0
5928, 41, 55, 58mulne0i 11798 . . . . . . . . . . . 12 (2 · π) ≠ 0
6040, 51, 54, 59mulne0i 11798 . . . . . . . . . . 11 (i · (2 · π)) ≠ 0
6160a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · (2 · π)) ≠ 0)
6239, 53, 61divcan4d 11937 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((𝑥 / 𝑁) · (i · (2 · π))) / (i · (2 · π))) = (𝑥 / 𝑁))
6350, 62eqtrd 2776 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) = (𝑥 / 𝑁))
6463eleq1d 2822 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ ↔ (𝑥 / 𝑁) ∈ ℤ))
6521, 27, 643bitrd 304 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (𝑥 / 𝑁) ∈ ℤ))
666adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (2 / 𝑁) ∈ ℂ)
67 simpr 485 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
6815, 66, 67cxpmul2d 26064 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐((2 / 𝑁) · 𝑥)) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
69 cnfldexp 20830 . . . . . . . . 9 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
708, 69sylan 580 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
71 cnring 20819 . . . . . . . . . 10 fld ∈ Ring
72 cnfldbas 20800 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
73 cnfld0 20821 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
74 cndrng 20826 . . . . . . . . . . . 12 fld ∈ DivRing
7572, 73, 74drngui 20191 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
76 eqid 2736 . . . . . . . . . . 11 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
7775, 76unitsubm 20099 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
7871, 77mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
7914adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}))
80 eqid 2736 . . . . . . . . . 10 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
81 proot1ex.g . . . . . . . . . 10 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
82 eqid 2736 . . . . . . . . . 10 (.g𝐺) = (.g𝐺)
8380, 81, 82submmulg 18920 . . . . . . . . 9 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑥 ∈ ℕ0 ∧ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0})) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))))
8478, 67, 79, 83syl3anc 1371 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))))
8568, 70, 843eqtr2rd 2783 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = (-1↑𝑐((2 / 𝑁) · 𝑥)))
8685eqeq1d 2738 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1 ↔ (-1↑𝑐((2 / 𝑁) · 𝑥)) = 1))
87 nnz 12520 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
8887adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ)
89 nn0z 12524 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
9089adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
91 dvdsval2 16139 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝑁𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ))
9288, 34, 90, 91syl3anc 1371 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑁𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ))
9365, 86, 923bitr4rd 311 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1))
9493ralrimiva 3143 . . . 4 (𝑁 ∈ ℕ → ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1))
9575, 81unitgrp 20096 . . . . . 6 (ℂfld ∈ Ring → 𝐺 ∈ Grp)
9671, 95mp1i 13 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Grp)
97 nnnn0 12420 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
9875, 81unitgrpbas 20095 . . . . . 6 (ℂ ∖ {0}) = (Base‘𝐺)
99 proot1ex.o . . . . . 6 𝑂 = (od‘𝐺)
100 cnfld1 20822 . . . . . . . 8 1 = (1r‘ℂfld)
10175, 81, 100unitgrpid 20098 . . . . . . 7 (ℂfld ∈ Ring → 1 = (0g𝐺))
10271, 101ax-mp 5 . . . . . 6 1 = (0g𝐺)
10398, 99, 82, 102odeq 19332 . . . . 5 ((𝐺 ∈ Grp ∧ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ 𝑁 ∈ ℕ0) → (𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))) ↔ ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1)))
10496, 14, 97, 103syl3anc 1371 . . . 4 (𝑁 ∈ ℕ → (𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))) ↔ ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1)))
10594, 104mpbird 256 . . 3 (𝑁 ∈ ℕ → 𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))))
106105eqcomd 2742 . 2 (𝑁 ∈ ℕ → (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)
10798, 99odf 19319 . . . 4 𝑂:(ℂ ∖ {0})⟶ℕ0
108 ffn 6668 . . . 4 (𝑂:(ℂ ∖ {0})⟶ℕ0𝑂 Fn (ℂ ∖ {0}))
109107, 108ax-mp 5 . . 3 𝑂 Fn (ℂ ∖ {0})
110 fniniseg 7010 . . 3 (𝑂 Fn (ℂ ∖ {0}) → ((-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)))
111109, 110mp1i 13 . 2 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)))
11214, 106, 111mpbir2and 711 1 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  cdif 3907  {csn 4586   class class class wbr 5105  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052  ici 11053   · cmul 11056  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  +crp 12915  cexp 13967  expce 15944  πcpi 15949  cdvds 16136  s cress 17112  0gc0g 17321  SubMndcsubmnd 18600  Grpcgrp 18748  .gcmg 18872  odcod 19306  mulGrpcmgp 19896  Ringcrg 19964  fldccnfld 20796  logclog 25910  𝑐ccxp 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-cntz 19097  df-od 19310  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator