Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1ex Structured version   Visualization version   GIF version

Theorem proot1ex 43192
Description: The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1ex.g 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
proot1ex.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
proot1ex (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))

Proof of Theorem proot1ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neg1cn 12178 . . . 4 -1 ∈ ℂ
2 2rp 12963 . . . . . 6 2 ∈ ℝ+
3 nnrp 12970 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
4 rpdivcl 12985 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 / 𝑁) ∈ ℝ+)
52, 3, 4sylancr 587 . . . . 5 (𝑁 ∈ ℕ → (2 / 𝑁) ∈ ℝ+)
65rpcnd 13004 . . . 4 (𝑁 ∈ ℕ → (2 / 𝑁) ∈ ℂ)
7 cxpcl 26590 . . . 4 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
81, 6, 7sylancr 587 . . 3 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
91a1i 11 . . . 4 (𝑁 ∈ ℕ → -1 ∈ ℂ)
10 neg1ne0 12180 . . . . 5 -1 ≠ 0
1110a1i 11 . . . 4 (𝑁 ∈ ℕ → -1 ≠ 0)
129, 11, 6cxpne0d 26629 . . 3 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ≠ 0)
13 eldifsn 4753 . . 3 ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0))
148, 12, 13sylanbrc 583 . 2 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}))
151a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → -1 ∈ ℂ)
1610a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → -1 ≠ 0)
17 nn0cn 12459 . . . . . . . . . 10 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
18 mulcl 11159 . . . . . . . . . 10 (((2 / 𝑁) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((2 / 𝑁) · 𝑥) ∈ ℂ)
196, 17, 18syl2an 596 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((2 / 𝑁) · 𝑥) ∈ ℂ)
2015, 16, 19cxpefd 26628 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐((2 / 𝑁) · 𝑥)) = (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))))
2120eqeq1d 2732 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1))
22 logcl 26484 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ -1 ≠ 0) → (log‘-1) ∈ ℂ)
231, 10, 22mp2an 692 . . . . . . . . 9 (log‘-1) ∈ ℂ
24 mulcl 11159 . . . . . . . . 9 ((((2 / 𝑁) · 𝑥) ∈ ℂ ∧ (log‘-1) ∈ ℂ) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ)
2519, 23, 24sylancl 586 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ)
26 efeq1 26444 . . . . . . . 8 ((((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ))
2725, 26syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ))
28 2cn 12268 . . . . . . . . . . . . . 14 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 2 ∈ ℂ)
30 nncn 12201 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3130adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℂ)
3217adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℂ)
33 nnne0 12227 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3433adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ≠ 0)
3529, 31, 32, 34div13d 11989 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((2 / 𝑁) · 𝑥) = ((𝑥 / 𝑁) · 2))
36 logm1 26505 . . . . . . . . . . . . 13 (log‘-1) = (i · π)
3736a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (log‘-1) = (i · π))
3835, 37oveq12d 7408 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) = (((𝑥 / 𝑁) · 2) · (i · π)))
3932, 31, 34divcld 11965 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥 / 𝑁) ∈ ℂ)
40 ax-icn 11134 . . . . . . . . . . . . . 14 i ∈ ℂ
41 picn 26374 . . . . . . . . . . . . . 14 π ∈ ℂ
4240, 41mulcli 11188 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
4342a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · π) ∈ ℂ)
4439, 29, 43mulassd 11204 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((𝑥 / 𝑁) · 2) · (i · π)) = ((𝑥 / 𝑁) · (2 · (i · π))))
4540a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → i ∈ ℂ)
4641a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → π ∈ ℂ)
4729, 45, 46mul12d 11390 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (2 · (i · π)) = (i · (2 · π)))
4847oveq2d 7406 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((𝑥 / 𝑁) · (2 · (i · π))) = ((𝑥 / 𝑁) · (i · (2 · π))))
4938, 44, 483eqtrd 2769 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) = ((𝑥 / 𝑁) · (i · (2 · π))))
5049oveq1d 7405 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) = (((𝑥 / 𝑁) · (i · (2 · π))) / (i · (2 · π))))
5128, 41mulcli 11188 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
5240, 51mulcli 11188 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
5352a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · (2 · π)) ∈ ℂ)
54 ine0 11620 . . . . . . . . . . . 12 i ≠ 0
55 2ne0 12297 . . . . . . . . . . . . 13 2 ≠ 0
56 pire 26373 . . . . . . . . . . . . . 14 π ∈ ℝ
57 pipos 26375 . . . . . . . . . . . . . 14 0 < π
5856, 57gt0ne0ii 11721 . . . . . . . . . . . . 13 π ≠ 0
5928, 41, 55, 58mulne0i 11828 . . . . . . . . . . . 12 (2 · π) ≠ 0
6040, 51, 54, 59mulne0i 11828 . . . . . . . . . . 11 (i · (2 · π)) ≠ 0
6160a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · (2 · π)) ≠ 0)
6239, 53, 61divcan4d 11971 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((𝑥 / 𝑁) · (i · (2 · π))) / (i · (2 · π))) = (𝑥 / 𝑁))
6350, 62eqtrd 2765 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) = (𝑥 / 𝑁))
6463eleq1d 2814 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ ↔ (𝑥 / 𝑁) ∈ ℤ))
6521, 27, 643bitrd 305 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (𝑥 / 𝑁) ∈ ℤ))
666adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (2 / 𝑁) ∈ ℂ)
67 simpr 484 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
6815, 66, 67cxpmul2d 26625 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐((2 / 𝑁) · 𝑥)) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
69 cnfldexp 21323 . . . . . . . . 9 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
708, 69sylan 580 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
71 cnring 21309 . . . . . . . . . 10 fld ∈ Ring
72 cnfldbas 21275 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
73 cnfld0 21311 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
74 cndrng 21317 . . . . . . . . . . . 12 fld ∈ DivRing
7572, 73, 74drngui 20651 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
76 eqid 2730 . . . . . . . . . . 11 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
7775, 76unitsubm 20302 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
7871, 77mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
7914adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}))
80 eqid 2730 . . . . . . . . . 10 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
81 proot1ex.g . . . . . . . . . 10 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
82 eqid 2730 . . . . . . . . . 10 (.g𝐺) = (.g𝐺)
8380, 81, 82submmulg 19057 . . . . . . . . 9 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑥 ∈ ℕ0 ∧ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0})) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))))
8478, 67, 79, 83syl3anc 1373 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))))
8568, 70, 843eqtr2rd 2772 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = (-1↑𝑐((2 / 𝑁) · 𝑥)))
8685eqeq1d 2732 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1 ↔ (-1↑𝑐((2 / 𝑁) · 𝑥)) = 1))
87 nnz 12557 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
8887adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ)
89 nn0z 12561 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
9089adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
91 dvdsval2 16232 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝑁𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ))
9288, 34, 90, 91syl3anc 1373 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑁𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ))
9365, 86, 923bitr4rd 312 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1))
9493ralrimiva 3126 . . . 4 (𝑁 ∈ ℕ → ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1))
9575, 81unitgrp 20299 . . . . . 6 (ℂfld ∈ Ring → 𝐺 ∈ Grp)
9671, 95mp1i 13 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Grp)
97 nnnn0 12456 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
9875, 81unitgrpbas 20298 . . . . . 6 (ℂ ∖ {0}) = (Base‘𝐺)
99 proot1ex.o . . . . . 6 𝑂 = (od‘𝐺)
100 cnfld1 21312 . . . . . . . 8 1 = (1r‘ℂfld)
10175, 81, 100unitgrpid 20301 . . . . . . 7 (ℂfld ∈ Ring → 1 = (0g𝐺))
10271, 101ax-mp 5 . . . . . 6 1 = (0g𝐺)
10398, 99, 82, 102odeq 19487 . . . . 5 ((𝐺 ∈ Grp ∧ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ 𝑁 ∈ ℕ0) → (𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))) ↔ ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1)))
10496, 14, 97, 103syl3anc 1373 . . . 4 (𝑁 ∈ ℕ → (𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))) ↔ ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1)))
10594, 104mpbird 257 . . 3 (𝑁 ∈ ℕ → 𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))))
106105eqcomd 2736 . 2 (𝑁 ∈ ℕ → (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)
10798, 99odf 19474 . . . 4 𝑂:(ℂ ∖ {0})⟶ℕ0
108 ffn 6691 . . . 4 (𝑂:(ℂ ∖ {0})⟶ℕ0𝑂 Fn (ℂ ∖ {0}))
109107, 108ax-mp 5 . . 3 𝑂 Fn (ℂ ∖ {0})
110 fniniseg 7035 . . 3 (𝑂 Fn (ℂ ∖ {0}) → ((-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)))
111109, 110mp1i 13 . 2 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)))
11214, 106, 111mpbir2and 713 1 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3914  {csn 4592   class class class wbr 5110  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076  ici 11077   · cmul 11080  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  +crp 12958  cexp 14033  expce 16034  πcpi 16039  cdvds 16229  s cress 17207  0gc0g 17409  SubMndcsubmnd 18716  Grpcgrp 18872  .gcmg 19006  odcod 19461  mulGrpcmgp 20056  Ringcrg 20149  fldccnfld 21271  logclog 26470  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-cntz 19256  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator