Step | Hyp | Ref
| Expression |
1 | | neg1cn 12017 |
. . . 4
⊢ -1 ∈
ℂ |
2 | | 2rp 12664 |
. . . . . 6
⊢ 2 ∈
ℝ+ |
3 | | nnrp 12670 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
4 | | rpdivcl 12684 |
. . . . . 6
⊢ ((2
∈ ℝ+ ∧ 𝑁 ∈ ℝ+) → (2 /
𝑁) ∈
ℝ+) |
5 | 2, 3, 4 | sylancr 586 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (2 /
𝑁) ∈
ℝ+) |
6 | 5 | rpcnd 12703 |
. . . 4
⊢ (𝑁 ∈ ℕ → (2 /
𝑁) ∈
ℂ) |
7 | | cxpcl 25734 |
. . . 4
⊢ ((-1
∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) →
(-1↑𝑐(2 / 𝑁)) ∈ ℂ) |
8 | 1, 6, 7 | sylancr 586 |
. . 3
⊢ (𝑁 ∈ ℕ →
(-1↑𝑐(2 / 𝑁)) ∈ ℂ) |
9 | 1 | a1i 11 |
. . . 4
⊢ (𝑁 ∈ ℕ → -1 ∈
ℂ) |
10 | | neg1ne0 12019 |
. . . . 5
⊢ -1 ≠
0 |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝑁 ∈ ℕ → -1 ≠
0) |
12 | 9, 11, 6 | cxpne0d 25773 |
. . 3
⊢ (𝑁 ∈ ℕ →
(-1↑𝑐(2 / 𝑁)) ≠ 0) |
13 | | eldifsn 4717 |
. . 3
⊢
((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ↔
((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧
(-1↑𝑐(2 / 𝑁)) ≠ 0)) |
14 | 8, 12, 13 | sylanbrc 582 |
. 2
⊢ (𝑁 ∈ ℕ →
(-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖
{0})) |
15 | 1 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ -1 ∈ ℂ) |
16 | 10 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ -1 ≠ 0) |
17 | | nn0cn 12173 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℕ0
→ 𝑥 ∈
ℂ) |
18 | | mulcl 10886 |
. . . . . . . . . 10
⊢ (((2 /
𝑁) ∈ ℂ ∧
𝑥 ∈ ℂ) →
((2 / 𝑁) · 𝑥) ∈
ℂ) |
19 | 6, 17, 18 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ ((2 / 𝑁) ·
𝑥) ∈
ℂ) |
20 | 15, 16, 19 | cxpefd 25772 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (-1↑𝑐((2 / 𝑁) · 𝑥)) = (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1)))) |
21 | 20 | eqeq1d 2740 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) =
1)) |
22 | | logcl 25629 |
. . . . . . . . . 10
⊢ ((-1
∈ ℂ ∧ -1 ≠ 0) → (log‘-1) ∈
ℂ) |
23 | 1, 10, 22 | mp2an 688 |
. . . . . . . . 9
⊢
(log‘-1) ∈ ℂ |
24 | | mulcl 10886 |
. . . . . . . . 9
⊢ ((((2 /
𝑁) · 𝑥) ∈ ℂ ∧
(log‘-1) ∈ ℂ) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈
ℂ) |
25 | 19, 23, 24 | sylancl 585 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (((2 / 𝑁) ·
𝑥) · (log‘-1))
∈ ℂ) |
26 | | efeq1 25589 |
. . . . . . . 8
⊢ ((((2 /
𝑁) · 𝑥) · (log‘-1))
∈ ℂ → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2
/ 𝑁) · 𝑥) · (log‘-1)) / (i
· (2 · π))) ∈ ℤ)) |
27 | 25, 26 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2
/ 𝑁) · 𝑥) · (log‘-1)) / (i
· (2 · π))) ∈ ℤ)) |
28 | | 2cn 11978 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ |
29 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ 2 ∈ ℂ) |
30 | | nncn 11911 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
31 | 30 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
32 | 17 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ 𝑥 ∈
ℂ) |
33 | | nnne0 11937 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ 𝑁 ≠
0) |
35 | 29, 31, 32, 34 | div13d 11705 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ ((2 / 𝑁) ·
𝑥) = ((𝑥 / 𝑁) · 2)) |
36 | | logm1 25649 |
. . . . . . . . . . . . 13
⊢
(log‘-1) = (i · π) |
37 | 36 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (log‘-1) = (i · π)) |
38 | 35, 37 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (((2 / 𝑁) ·
𝑥) · (log‘-1))
= (((𝑥 / 𝑁) · 2) · (i ·
π))) |
39 | 32, 31, 34 | divcld 11681 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (𝑥 / 𝑁) ∈
ℂ) |
40 | | ax-icn 10861 |
. . . . . . . . . . . . . 14
⊢ i ∈
ℂ |
41 | | picn 25521 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℂ |
42 | 40, 41 | mulcli 10913 |
. . . . . . . . . . . . 13
⊢ (i
· π) ∈ ℂ |
43 | 42 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (i · π) ∈ ℂ) |
44 | 39, 29, 43 | mulassd 10929 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (((𝑥 / 𝑁) · 2) · (i
· π)) = ((𝑥 /
𝑁) · (2 · (i
· π)))) |
45 | 40 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ i ∈ ℂ) |
46 | 41 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ π ∈ ℂ) |
47 | 29, 45, 46 | mul12d 11114 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (2 · (i · π)) = (i · (2 ·
π))) |
48 | 47 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ ((𝑥 / 𝑁) · (2 · (i
· π))) = ((𝑥 /
𝑁) · (i · (2
· π)))) |
49 | 38, 44, 48 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (((2 / 𝑁) ·
𝑥) · (log‘-1))
= ((𝑥 / 𝑁) · (i · (2 ·
π)))) |
50 | 49 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ ((((2 / 𝑁) ·
𝑥) · (log‘-1))
/ (i · (2 · π))) = (((𝑥 / 𝑁) · (i · (2 · π))) /
(i · (2 · π)))) |
51 | 28, 41 | mulcli 10913 |
. . . . . . . . . . . 12
⊢ (2
· π) ∈ ℂ |
52 | 40, 51 | mulcli 10913 |
. . . . . . . . . . 11
⊢ (i
· (2 · π)) ∈ ℂ |
53 | 52 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (i · (2 · π)) ∈ ℂ) |
54 | | ine0 11340 |
. . . . . . . . . . . 12
⊢ i ≠
0 |
55 | | 2ne0 12007 |
. . . . . . . . . . . . 13
⊢ 2 ≠
0 |
56 | | pire 25520 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℝ |
57 | | pipos 25522 |
. . . . . . . . . . . . . 14
⊢ 0 <
π |
58 | 56, 57 | gt0ne0ii 11441 |
. . . . . . . . . . . . 13
⊢ π ≠
0 |
59 | 28, 41, 55, 58 | mulne0i 11548 |
. . . . . . . . . . . 12
⊢ (2
· π) ≠ 0 |
60 | 40, 51, 54, 59 | mulne0i 11548 |
. . . . . . . . . . 11
⊢ (i
· (2 · π)) ≠ 0 |
61 | 60 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (i · (2 · π)) ≠ 0) |
62 | 39, 53, 61 | divcan4d 11687 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (((𝑥 / 𝑁) · (i · (2
· π))) / (i · (2 · π))) = (𝑥 / 𝑁)) |
63 | 50, 62 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ ((((2 / 𝑁) ·
𝑥) · (log‘-1))
/ (i · (2 · π))) = (𝑥 / 𝑁)) |
64 | 63 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (((((2 / 𝑁) ·
𝑥) · (log‘-1))
/ (i · (2 · π))) ∈ ℤ ↔ (𝑥 / 𝑁) ∈ ℤ)) |
65 | 21, 27, 64 | 3bitrd 304 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (𝑥 / 𝑁) ∈ ℤ)) |
66 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (2 / 𝑁) ∈
ℂ) |
67 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ 𝑥 ∈
ℕ0) |
68 | 15, 66, 67 | cxpmul2d 25769 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (-1↑𝑐((2 / 𝑁) · 𝑥)) = ((-1↑𝑐(2 / 𝑁))↑𝑥)) |
69 | | cnfldexp 20543 |
. . . . . . . . 9
⊢
(((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2
/ 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥)) |
70 | 8, 69 | sylan 579 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2
/ 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥)) |
71 | | cnring 20532 |
. . . . . . . . . 10
⊢
ℂfld ∈ Ring |
72 | | cnfldbas 20514 |
. . . . . . . . . . . 12
⊢ ℂ =
(Base‘ℂfld) |
73 | | cnfld0 20534 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘ℂfld) |
74 | | cndrng 20539 |
. . . . . . . . . . . 12
⊢
ℂfld ∈ DivRing |
75 | 72, 73, 74 | drngui 19912 |
. . . . . . . . . . 11
⊢ (ℂ
∖ {0}) = (Unit‘ℂfld) |
76 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
77 | 75, 76 | unitsubm 19827 |
. . . . . . . . . 10
⊢
(ℂfld ∈ Ring → (ℂ ∖ {0}) ∈
(SubMnd‘(mulGrp‘ℂfld))) |
78 | 71, 77 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (ℂ ∖ {0}) ∈
(SubMnd‘(mulGrp‘ℂfld))) |
79 | 14 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖
{0})) |
80 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.g‘(mulGrp‘ℂfld)) =
(.g‘(mulGrp‘ℂfld)) |
81 | | proot1ex.g |
. . . . . . . . . 10
⊢ 𝐺 =
((mulGrp‘ℂfld) ↾s (ℂ ∖
{0})) |
82 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.g‘𝐺) = (.g‘𝐺) |
83 | 80, 81, 82 | submmulg 18662 |
. . . . . . . . 9
⊢
(((ℂ ∖ {0}) ∈
(SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑥 ∈ ℕ0 ∧
(-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0})) →
(𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2
/ 𝑁))) = (𝑥(.g‘𝐺)(-1↑𝑐(2 / 𝑁)))) |
84 | 78, 67, 79, 83 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2
/ 𝑁))) = (𝑥(.g‘𝐺)(-1↑𝑐(2 / 𝑁)))) |
85 | 68, 70, 84 | 3eqtr2rd 2785 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (𝑥(.g‘𝐺)(-1↑𝑐(2 / 𝑁))) =
(-1↑𝑐((2 / 𝑁) · 𝑥))) |
86 | 85 | eqeq1d 2740 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ ((𝑥(.g‘𝐺)(-1↑𝑐(2 / 𝑁))) = 1 ↔
(-1↑𝑐((2 / 𝑁) · 𝑥)) = 1)) |
87 | | nnz 12272 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
88 | 87 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
89 | | nn0z 12273 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ0
→ 𝑥 ∈
ℤ) |
90 | 89 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ 𝑥 ∈
ℤ) |
91 | | dvdsval2 15894 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝑁 ∥ 𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ)) |
92 | 88, 34, 90, 91 | syl3anc 1369 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (𝑁 ∥ 𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ)) |
93 | 65, 86, 92 | 3bitr4rd 311 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0)
→ (𝑁 ∥ 𝑥 ↔ (𝑥(.g‘𝐺)(-1↑𝑐(2 / 𝑁))) = 1)) |
94 | 93 | ralrimiva 3107 |
. . . 4
⊢ (𝑁 ∈ ℕ →
∀𝑥 ∈
ℕ0 (𝑁
∥ 𝑥 ↔ (𝑥(.g‘𝐺)(-1↑𝑐(2
/ 𝑁))) =
1)) |
95 | 75, 81 | unitgrp 19824 |
. . . . . 6
⊢
(ℂfld ∈ Ring → 𝐺 ∈ Grp) |
96 | 71, 95 | mp1i 13 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Grp) |
97 | | nnnn0 12170 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
98 | 75, 81 | unitgrpbas 19823 |
. . . . . 6
⊢ (ℂ
∖ {0}) = (Base‘𝐺) |
99 | | proot1ex.o |
. . . . . 6
⊢ 𝑂 = (od‘𝐺) |
100 | | cnfld1 20535 |
. . . . . . . 8
⊢ 1 =
(1r‘ℂfld) |
101 | 75, 81, 100 | unitgrpid 19826 |
. . . . . . 7
⊢
(ℂfld ∈ Ring → 1 = (0g‘𝐺)) |
102 | 71, 101 | ax-mp 5 |
. . . . . 6
⊢ 1 =
(0g‘𝐺) |
103 | 98, 99, 82, 102 | odeq 19073 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧
(-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ 𝑁 ∈ ℕ0)
→ (𝑁 = (𝑂‘(-1↑𝑐(2 /
𝑁))) ↔ ∀𝑥 ∈ ℕ0
(𝑁 ∥ 𝑥 ↔ (𝑥(.g‘𝐺)(-1↑𝑐(2 / 𝑁))) = 1))) |
104 | 96, 14, 97, 103 | syl3anc 1369 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑁 = (𝑂‘(-1↑𝑐(2 /
𝑁))) ↔ ∀𝑥 ∈ ℕ0
(𝑁 ∥ 𝑥 ↔ (𝑥(.g‘𝐺)(-1↑𝑐(2 / 𝑁))) = 1))) |
105 | 94, 104 | mpbird 256 |
. . 3
⊢ (𝑁 ∈ ℕ → 𝑁 = (𝑂‘(-1↑𝑐(2 /
𝑁)))) |
106 | 105 | eqcomd 2744 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑂‘(-1↑𝑐(2 /
𝑁))) = 𝑁) |
107 | 98, 99 | odf 19060 |
. . . 4
⊢ 𝑂:(ℂ ∖
{0})⟶ℕ0 |
108 | | ffn 6584 |
. . . 4
⊢ (𝑂:(ℂ ∖
{0})⟶ℕ0 → 𝑂 Fn (ℂ ∖ {0})) |
109 | 107, 108 | ax-mp 5 |
. . 3
⊢ 𝑂 Fn (ℂ ∖
{0}) |
110 | | fniniseg 6919 |
. . 3
⊢ (𝑂 Fn (ℂ ∖ {0}) →
((-1↑𝑐(2 / 𝑁)) ∈ (◡𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 /
𝑁)) ∈ (ℂ ∖
{0}) ∧ (𝑂‘(-1↑𝑐(2 /
𝑁))) = 𝑁))) |
111 | 109, 110 | mp1i 13 |
. 2
⊢ (𝑁 ∈ ℕ →
((-1↑𝑐(2 / 𝑁)) ∈ (◡𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 /
𝑁)) ∈ (ℂ ∖
{0}) ∧ (𝑂‘(-1↑𝑐(2 /
𝑁))) = 𝑁))) |
112 | 14, 106, 111 | mpbir2and 709 |
1
⊢ (𝑁 ∈ ℕ →
(-1↑𝑐(2 / 𝑁)) ∈ (◡𝑂 “ {𝑁})) |