Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qrngdiv Structured version   Visualization version   GIF version

Theorem qrngdiv 26186
 Description: The division operation in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypothesis
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
Assertion
Ref Expression
qrngdiv ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → (𝑋(/r𝑄)𝑌) = (𝑋 / 𝑌))

Proof of Theorem qrngdiv
StepHypRef Expression
1 qsubdrg 20572 . . . 4 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
21simpli 487 . . 3 ℚ ∈ (SubRing‘ℂfld)
3 simp1 1133 . . 3 ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → 𝑋 ∈ ℚ)
4 3simpc 1147 . . . 4 ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → (𝑌 ∈ ℚ ∧ 𝑌 ≠ 0))
5 eldifsn 4692 . . . 4 (𝑌 ∈ (ℚ ∖ {0}) ↔ (𝑌 ∈ ℚ ∧ 𝑌 ≠ 0))
64, 5sylibr 237 . . 3 ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → 𝑌 ∈ (ℚ ∖ {0}))
7 qrng.q . . . 4 𝑄 = (ℂflds ℚ)
8 cnflddiv 20550 . . . 4 / = (/r‘ℂfld)
97qrngbas 26181 . . . . 5 ℚ = (Base‘𝑄)
107qrng0 26183 . . . . 5 0 = (0g𝑄)
117qdrng 26182 . . . . 5 𝑄 ∈ DivRing
129, 10, 11drngui 19483 . . . 4 (ℚ ∖ {0}) = (Unit‘𝑄)
13 eqid 2821 . . . 4 (/r𝑄) = (/r𝑄)
147, 8, 12, 13subrgdv 19527 . . 3 ((ℚ ∈ (SubRing‘ℂfld) ∧ 𝑋 ∈ ℚ ∧ 𝑌 ∈ (ℚ ∖ {0})) → (𝑋 / 𝑌) = (𝑋(/r𝑄)𝑌))
152, 3, 6, 14mp3an2i 1463 . 2 ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → (𝑋 / 𝑌) = (𝑋(/r𝑄)𝑌))
1615eqcomd 2827 1 ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → (𝑋(/r𝑄)𝑌) = (𝑋 / 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3007   ∖ cdif 3907  {csn 4540  ‘cfv 6328  (class class class)co 7130  0cc0 10514   / cdiv 11274  ℚcq 12326   ↾s cress 16462  /rcdvr 19410  DivRingcdr 19477  SubRingcsubrg 19506  ℂfldccnfld 20520 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-addf 10593  ax-mulf 10594 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-fz 12876  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-0g 16693  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-minusg 18085  df-subg 18254  df-cmn 18886  df-mgp 19218  df-ur 19230  df-ring 19277  df-cring 19278  df-oppr 19351  df-dvdsr 19369  df-unit 19370  df-invr 19400  df-dvr 19411  df-drng 19479  df-subrg 19508  df-cnfld 20521 This theorem is referenced by:  ostthlem1  26189
 Copyright terms: Public domain W3C validator