MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sum2dchr Structured version   Visualization version   GIF version

Theorem sum2dchr 27336
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑥(𝐴) for fixed 𝐴 and all 𝑥 is 0 if 𝐴 = 1 and ϕ(𝑛) otherwise. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sum2dchr.g 𝐺 = (DChr‘𝑁)
sum2dchr.d 𝐷 = (Base‘𝐺)
sum2dchr.z 𝑍 = (ℤ/nℤ‘𝑁)
sum2dchr.b 𝐵 = (Base‘𝑍)
sum2dchr.u 𝑈 = (Unit‘𝑍)
sum2dchr.n (𝜑𝑁 ∈ ℕ)
sum2dchr.a (𝜑𝐴𝐵)
sum2dchr.c (𝜑𝐶𝑈)
Assertion
Ref Expression
sum2dchr (𝜑 → Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)

Proof of Theorem sum2dchr
StepHypRef Expression
1 sum2dchr.g . . 3 𝐺 = (DChr‘𝑁)
2 sum2dchr.d . . 3 𝐷 = (Base‘𝐺)
3 sum2dchr.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
4 eqid 2740 . . 3 (1r𝑍) = (1r𝑍)
5 sum2dchr.b . . 3 𝐵 = (Base‘𝑍)
6 sum2dchr.n . . 3 (𝜑𝑁 ∈ ℕ)
76nnnn0d 12613 . . . . 5 (𝜑𝑁 ∈ ℕ0)
83zncrng 21586 . . . . 5 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
9 crngring 20272 . . . . 5 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
107, 8, 93syl 18 . . . 4 (𝜑𝑍 ∈ Ring)
11 sum2dchr.a . . . 4 (𝜑𝐴𝐵)
12 sum2dchr.c . . . 4 (𝜑𝐶𝑈)
13 sum2dchr.u . . . . 5 𝑈 = (Unit‘𝑍)
14 eqid 2740 . . . . 5 (/r𝑍) = (/r𝑍)
155, 13, 14dvrcl 20430 . . . 4 ((𝑍 ∈ Ring ∧ 𝐴𝐵𝐶𝑈) → (𝐴(/r𝑍)𝐶) ∈ 𝐵)
1610, 11, 12, 15syl3anc 1371 . . 3 (𝜑 → (𝐴(/r𝑍)𝐶) ∈ 𝐵)
171, 2, 3, 4, 5, 6, 16sumdchr 27334 . 2 (𝜑 → Σ𝑥𝐷 (𝑥‘(𝐴(/r𝑍)𝐶)) = if((𝐴(/r𝑍)𝐶) = (1r𝑍), (ϕ‘𝑁), 0))
18 eqid 2740 . . . . . . . 8 (.r𝑍) = (.r𝑍)
19 eqid 2740 . . . . . . . 8 (invr𝑍) = (invr𝑍)
205, 18, 13, 19, 14dvrval 20429 . . . . . . 7 ((𝐴𝐵𝐶𝑈) → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2111, 12, 20syl2anc 583 . . . . . 6 (𝜑 → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2221adantr 480 . . . . 5 ((𝜑𝑥𝐷) → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2322fveq2d 6924 . . . 4 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(/r𝑍)𝐶)) = (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))))
241, 3, 2dchrmhm 27303 . . . . . 6 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
25 simpr 484 . . . . . 6 ((𝜑𝑥𝐷) → 𝑥𝐷)
2624, 25sselid 4006 . . . . 5 ((𝜑𝑥𝐷) → 𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
2711adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝐴𝐵)
285, 13unitss 20402 . . . . . 6 𝑈𝐵
2913, 19unitinvcl 20416 . . . . . . . 8 ((𝑍 ∈ Ring ∧ 𝐶𝑈) → ((invr𝑍)‘𝐶) ∈ 𝑈)
3010, 12, 29syl2anc 583 . . . . . . 7 (𝜑 → ((invr𝑍)‘𝐶) ∈ 𝑈)
3130adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → ((invr𝑍)‘𝐶) ∈ 𝑈)
3228, 31sselid 4006 . . . . 5 ((𝜑𝑥𝐷) → ((invr𝑍)‘𝐶) ∈ 𝐵)
33 eqid 2740 . . . . . . 7 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3433, 5mgpbas 20167 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑍))
3533, 18mgpplusg 20165 . . . . . 6 (.r𝑍) = (+g‘(mulGrp‘𝑍))
36 eqid 2740 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
37 cnfldmul 21395 . . . . . . 7 · = (.r‘ℂfld)
3836, 37mgpplusg 20165 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
3934, 35, 38mhmlin 18828 . . . . 5 ((𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴𝐵 ∧ ((invr𝑍)‘𝐶) ∈ 𝐵) → (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))))
4026, 27, 32, 39syl3anc 1371 . . . 4 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))))
41 eqid 2740 . . . . . . . 8 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
42 eqid 2740 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
431, 3, 2, 13, 41, 42, 25dchrghm 27318 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑥𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
4412adantr 480 . . . . . . 7 ((𝜑𝑥𝐷) → 𝐶𝑈)
4513, 41unitgrpbas 20408 . . . . . . . 8 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
4613, 41, 19invrfval 20415 . . . . . . . 8 (invr𝑍) = (invg‘((mulGrp‘𝑍) ↾s 𝑈))
47 cnfldbas 21391 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
48 cnfld0 21428 . . . . . . . . . 10 0 = (0g‘ℂfld)
49 cndrng 21434 . . . . . . . . . 10 fld ∈ DivRing
5047, 48, 49drngui 20757 . . . . . . . . 9 (ℂ ∖ {0}) = (Unit‘ℂfld)
51 eqid 2740 . . . . . . . . 9 (invr‘ℂfld) = (invr‘ℂfld)
5250, 42, 51invrfval 20415 . . . . . . . 8 (invr‘ℂfld) = (invg‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
5345, 46, 52ghminv 19263 . . . . . . 7 (((𝑥𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ 𝐶𝑈) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)))
5443, 44, 53syl2anc 583 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)))
5531fvresd 6940 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = (𝑥‘((invr𝑍)‘𝐶)))
5644fvresd 6940 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘𝐶) = (𝑥𝐶))
5756fveq2d 6924 . . . . . . 7 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)) = ((invr‘ℂfld)‘(𝑥𝐶)))
581, 3, 2, 5, 25dchrf 27304 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝑥:𝐵⟶ℂ)
5928, 44sselid 4006 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐶𝐵)
6058, 59ffvelcdmd 7119 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑥𝐶) ∈ ℂ)
611, 3, 2, 5, 13, 25, 59dchrn0 27312 . . . . . . . . 9 ((𝜑𝑥𝐷) → ((𝑥𝐶) ≠ 0 ↔ 𝐶𝑈))
6244, 61mpbird 257 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑥𝐶) ≠ 0)
63 cnfldinv 21438 . . . . . . . 8 (((𝑥𝐶) ∈ ℂ ∧ (𝑥𝐶) ≠ 0) → ((invr‘ℂfld)‘(𝑥𝐶)) = (1 / (𝑥𝐶)))
6460, 62, 63syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘(𝑥𝐶)) = (1 / (𝑥𝐶)))
65 recval 15371 . . . . . . . . 9 (((𝑥𝐶) ∈ ℂ ∧ (𝑥𝐶) ≠ 0) → (1 / (𝑥𝐶)) = ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)))
6660, 62, 65syl2anc 583 . . . . . . . 8 ((𝜑𝑥𝐷) → (1 / (𝑥𝐶)) = ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)))
671, 2, 25, 3, 13, 44dchrabs 27322 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → (abs‘(𝑥𝐶)) = 1)
6867oveq1d 7463 . . . . . . . . . 10 ((𝜑𝑥𝐷) → ((abs‘(𝑥𝐶))↑2) = (1↑2))
69 sq1 14244 . . . . . . . . . 10 (1↑2) = 1
7068, 69eqtrdi 2796 . . . . . . . . 9 ((𝜑𝑥𝐷) → ((abs‘(𝑥𝐶))↑2) = 1)
7170oveq2d 7464 . . . . . . . 8 ((𝜑𝑥𝐷) → ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)) = ((∗‘(𝑥𝐶)) / 1))
7260cjcld 15245 . . . . . . . . 9 ((𝜑𝑥𝐷) → (∗‘(𝑥𝐶)) ∈ ℂ)
7372div1d 12062 . . . . . . . 8 ((𝜑𝑥𝐷) → ((∗‘(𝑥𝐶)) / 1) = (∗‘(𝑥𝐶)))
7466, 71, 733eqtrd 2784 . . . . . . 7 ((𝜑𝑥𝐷) → (1 / (𝑥𝐶)) = (∗‘(𝑥𝐶)))
7557, 64, 743eqtrd 2784 . . . . . 6 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)) = (∗‘(𝑥𝐶)))
7654, 55, 753eqtr3d 2788 . . . . 5 ((𝜑𝑥𝐷) → (𝑥‘((invr𝑍)‘𝐶)) = (∗‘(𝑥𝐶)))
7776oveq2d 7464 . . . 4 ((𝜑𝑥𝐷) → ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (∗‘(𝑥𝐶))))
7823, 40, 773eqtrd 2784 . . 3 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(/r𝑍)𝐶)) = ((𝑥𝐴) · (∗‘(𝑥𝐶))))
7978sumeq2dv 15750 . 2 (𝜑 → Σ𝑥𝐷 (𝑥‘(𝐴(/r𝑍)𝐶)) = Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))))
805, 13, 14, 4dvreq1 20437 . . . 4 ((𝑍 ∈ Ring ∧ 𝐴𝐵𝐶𝑈) → ((𝐴(/r𝑍)𝐶) = (1r𝑍) ↔ 𝐴 = 𝐶))
8110, 11, 12, 80syl3anc 1371 . . 3 (𝜑 → ((𝐴(/r𝑍)𝐶) = (1r𝑍) ↔ 𝐴 = 𝐶))
8281ifbid 4571 . 2 (𝜑 → if((𝐴(/r𝑍)𝐶) = (1r𝑍), (ϕ‘𝑁), 0) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
8317, 79, 823eqtr3d 2788 1 (𝜑 → Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  ifcif 4548  {csn 4648  cres 5702  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   · cmul 11189   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cexp 14112  ccj 15145  abscabs 15283  Σcsu 15734  ϕcphi 16811  Basecbs 17258  s cress 17287  .rcmulr 17312   MndHom cmhm 18816   GrpHom cghm 19252  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261  Unitcui 20381  invrcinvr 20413  /rcdvr 20426  fldccnfld 21387  ℤ/nczn 21536  DChrcdchr 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-phi 16813  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-qus 17569  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-gim 19299  df-ga 19330  df-cntz 19357  df-oppg 19386  df-od 19570  df-gex 19571  df-pgp 19572  df-lsm 19678  df-pj1 19679  df-cmn 19824  df-abl 19825  df-cyg 19920  df-dprd 20039  df-dpj 20040  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zn 21540  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-0p 25724  df-limc 25921  df-dv 25922  df-ply 26247  df-idp 26248  df-coe 26249  df-dgr 26250  df-quot 26351  df-log 26616  df-cxp 26617  df-dchr 27295
This theorem is referenced by:  rpvmasum2  27574
  Copyright terms: Public domain W3C validator