MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sum2dchr Structured version   Visualization version   GIF version

Theorem sum2dchr 27327
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑥(𝐴) for fixed 𝐴 and all 𝑥 is 0 if 𝐴 = 1 and ϕ(𝑛) otherwise. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sum2dchr.g 𝐺 = (DChr‘𝑁)
sum2dchr.d 𝐷 = (Base‘𝐺)
sum2dchr.z 𝑍 = (ℤ/nℤ‘𝑁)
sum2dchr.b 𝐵 = (Base‘𝑍)
sum2dchr.u 𝑈 = (Unit‘𝑍)
sum2dchr.n (𝜑𝑁 ∈ ℕ)
sum2dchr.a (𝜑𝐴𝐵)
sum2dchr.c (𝜑𝐶𝑈)
Assertion
Ref Expression
sum2dchr (𝜑 → Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)

Proof of Theorem sum2dchr
StepHypRef Expression
1 sum2dchr.g . . 3 𝐺 = (DChr‘𝑁)
2 sum2dchr.d . . 3 𝐷 = (Base‘𝐺)
3 sum2dchr.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
4 eqid 2734 . . 3 (1r𝑍) = (1r𝑍)
5 sum2dchr.b . . 3 𝐵 = (Base‘𝑍)
6 sum2dchr.n . . 3 (𝜑𝑁 ∈ ℕ)
76nnnn0d 12609 . . . . 5 (𝜑𝑁 ∈ ℕ0)
83zncrng 21581 . . . . 5 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
9 crngring 20267 . . . . 5 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
107, 8, 93syl 18 . . . 4 (𝜑𝑍 ∈ Ring)
11 sum2dchr.a . . . 4 (𝜑𝐴𝐵)
12 sum2dchr.c . . . 4 (𝜑𝐶𝑈)
13 sum2dchr.u . . . . 5 𝑈 = (Unit‘𝑍)
14 eqid 2734 . . . . 5 (/r𝑍) = (/r𝑍)
155, 13, 14dvrcl 20425 . . . 4 ((𝑍 ∈ Ring ∧ 𝐴𝐵𝐶𝑈) → (𝐴(/r𝑍)𝐶) ∈ 𝐵)
1610, 11, 12, 15syl3anc 1371 . . 3 (𝜑 → (𝐴(/r𝑍)𝐶) ∈ 𝐵)
171, 2, 3, 4, 5, 6, 16sumdchr 27325 . 2 (𝜑 → Σ𝑥𝐷 (𝑥‘(𝐴(/r𝑍)𝐶)) = if((𝐴(/r𝑍)𝐶) = (1r𝑍), (ϕ‘𝑁), 0))
18 eqid 2734 . . . . . . . 8 (.r𝑍) = (.r𝑍)
19 eqid 2734 . . . . . . . 8 (invr𝑍) = (invr𝑍)
205, 18, 13, 19, 14dvrval 20424 . . . . . . 7 ((𝐴𝐵𝐶𝑈) → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2111, 12, 20syl2anc 583 . . . . . 6 (𝜑 → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2221adantr 480 . . . . 5 ((𝜑𝑥𝐷) → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2322fveq2d 6923 . . . 4 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(/r𝑍)𝐶)) = (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))))
241, 3, 2dchrmhm 27294 . . . . . 6 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
25 simpr 484 . . . . . 6 ((𝜑𝑥𝐷) → 𝑥𝐷)
2624, 25sselid 4000 . . . . 5 ((𝜑𝑥𝐷) → 𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
2711adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝐴𝐵)
285, 13unitss 20397 . . . . . 6 𝑈𝐵
2913, 19unitinvcl 20411 . . . . . . . 8 ((𝑍 ∈ Ring ∧ 𝐶𝑈) → ((invr𝑍)‘𝐶) ∈ 𝑈)
3010, 12, 29syl2anc 583 . . . . . . 7 (𝜑 → ((invr𝑍)‘𝐶) ∈ 𝑈)
3130adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → ((invr𝑍)‘𝐶) ∈ 𝑈)
3228, 31sselid 4000 . . . . 5 ((𝜑𝑥𝐷) → ((invr𝑍)‘𝐶) ∈ 𝐵)
33 eqid 2734 . . . . . . 7 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3433, 5mgpbas 20162 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑍))
3533, 18mgpplusg 20160 . . . . . 6 (.r𝑍) = (+g‘(mulGrp‘𝑍))
36 eqid 2734 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
37 cnfldmul 21390 . . . . . . 7 · = (.r‘ℂfld)
3836, 37mgpplusg 20160 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
3934, 35, 38mhmlin 18823 . . . . 5 ((𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴𝐵 ∧ ((invr𝑍)‘𝐶) ∈ 𝐵) → (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))))
4026, 27, 32, 39syl3anc 1371 . . . 4 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))))
41 eqid 2734 . . . . . . . 8 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
42 eqid 2734 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
431, 3, 2, 13, 41, 42, 25dchrghm 27309 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑥𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
4412adantr 480 . . . . . . 7 ((𝜑𝑥𝐷) → 𝐶𝑈)
4513, 41unitgrpbas 20403 . . . . . . . 8 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
4613, 41, 19invrfval 20410 . . . . . . . 8 (invr𝑍) = (invg‘((mulGrp‘𝑍) ↾s 𝑈))
47 cnfldbas 21386 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
48 cnfld0 21423 . . . . . . . . . 10 0 = (0g‘ℂfld)
49 cndrng 21429 . . . . . . . . . 10 fld ∈ DivRing
5047, 48, 49drngui 20752 . . . . . . . . 9 (ℂ ∖ {0}) = (Unit‘ℂfld)
51 eqid 2734 . . . . . . . . 9 (invr‘ℂfld) = (invr‘ℂfld)
5250, 42, 51invrfval 20410 . . . . . . . 8 (invr‘ℂfld) = (invg‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
5345, 46, 52ghminv 19258 . . . . . . 7 (((𝑥𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ 𝐶𝑈) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)))
5443, 44, 53syl2anc 583 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)))
5531fvresd 6939 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = (𝑥‘((invr𝑍)‘𝐶)))
5644fvresd 6939 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘𝐶) = (𝑥𝐶))
5756fveq2d 6923 . . . . . . 7 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)) = ((invr‘ℂfld)‘(𝑥𝐶)))
581, 3, 2, 5, 25dchrf 27295 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝑥:𝐵⟶ℂ)
5928, 44sselid 4000 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐶𝐵)
6058, 59ffvelcdmd 7117 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑥𝐶) ∈ ℂ)
611, 3, 2, 5, 13, 25, 59dchrn0 27303 . . . . . . . . 9 ((𝜑𝑥𝐷) → ((𝑥𝐶) ≠ 0 ↔ 𝐶𝑈))
6244, 61mpbird 257 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑥𝐶) ≠ 0)
63 cnfldinv 21433 . . . . . . . 8 (((𝑥𝐶) ∈ ℂ ∧ (𝑥𝐶) ≠ 0) → ((invr‘ℂfld)‘(𝑥𝐶)) = (1 / (𝑥𝐶)))
6460, 62, 63syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘(𝑥𝐶)) = (1 / (𝑥𝐶)))
65 recval 15367 . . . . . . . . 9 (((𝑥𝐶) ∈ ℂ ∧ (𝑥𝐶) ≠ 0) → (1 / (𝑥𝐶)) = ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)))
6660, 62, 65syl2anc 583 . . . . . . . 8 ((𝜑𝑥𝐷) → (1 / (𝑥𝐶)) = ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)))
671, 2, 25, 3, 13, 44dchrabs 27313 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → (abs‘(𝑥𝐶)) = 1)
6867oveq1d 7460 . . . . . . . . . 10 ((𝜑𝑥𝐷) → ((abs‘(𝑥𝐶))↑2) = (1↑2))
69 sq1 14240 . . . . . . . . . 10 (1↑2) = 1
7068, 69eqtrdi 2790 . . . . . . . . 9 ((𝜑𝑥𝐷) → ((abs‘(𝑥𝐶))↑2) = 1)
7170oveq2d 7461 . . . . . . . 8 ((𝜑𝑥𝐷) → ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)) = ((∗‘(𝑥𝐶)) / 1))
7260cjcld 15241 . . . . . . . . 9 ((𝜑𝑥𝐷) → (∗‘(𝑥𝐶)) ∈ ℂ)
7372div1d 12058 . . . . . . . 8 ((𝜑𝑥𝐷) → ((∗‘(𝑥𝐶)) / 1) = (∗‘(𝑥𝐶)))
7466, 71, 733eqtrd 2778 . . . . . . 7 ((𝜑𝑥𝐷) → (1 / (𝑥𝐶)) = (∗‘(𝑥𝐶)))
7557, 64, 743eqtrd 2778 . . . . . 6 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)) = (∗‘(𝑥𝐶)))
7654, 55, 753eqtr3d 2782 . . . . 5 ((𝜑𝑥𝐷) → (𝑥‘((invr𝑍)‘𝐶)) = (∗‘(𝑥𝐶)))
7776oveq2d 7461 . . . 4 ((𝜑𝑥𝐷) → ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (∗‘(𝑥𝐶))))
7823, 40, 773eqtrd 2778 . . 3 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(/r𝑍)𝐶)) = ((𝑥𝐴) · (∗‘(𝑥𝐶))))
7978sumeq2dv 15746 . 2 (𝜑 → Σ𝑥𝐷 (𝑥‘(𝐴(/r𝑍)𝐶)) = Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))))
805, 13, 14, 4dvreq1 20432 . . . 4 ((𝑍 ∈ Ring ∧ 𝐴𝐵𝐶𝑈) → ((𝐴(/r𝑍)𝐶) = (1r𝑍) ↔ 𝐴 = 𝐶))
8110, 11, 12, 80syl3anc 1371 . . 3 (𝜑 → ((𝐴(/r𝑍)𝐶) = (1r𝑍) ↔ 𝐴 = 𝐶))
8281ifbid 4571 . 2 (𝜑 → if((𝐴(/r𝑍)𝐶) = (1r𝑍), (ϕ‘𝑁), 0) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
8317, 79, 823eqtr3d 2782 1 (𝜑 → Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2103  wne 2942  cdif 3967  ifcif 4548  {csn 4648  cres 5701  cfv 6572  (class class class)co 7445  cc 11178  0cc0 11180  1c1 11181   · cmul 11185   / cdiv 11943  cn 12289  2c2 12344  0cn0 12549  cexp 14108  ccj 15141  abscabs 15279  Σcsu 15730  ϕcphi 16806  Basecbs 17253  s cress 17282  .rcmulr 17307   MndHom cmhm 18811   GrpHom cghm 19247  mulGrpcmgp 20156  1rcur 20203  Ringcrg 20255  CRingccrg 20256  Unitcui 20376  invrcinvr 20408  /rcdvr 20421  fldccnfld 21382  ℤ/nczn 21531  DChrcdchr 27285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-inf2 9706  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258  ax-addf 11259  ax-mulf 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-disj 5137  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-of 7710  df-rpss 7754  df-om 7900  df-1st 8026  df-2nd 8027  df-supp 8198  df-tpos 8263  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-oadd 8522  df-omul 8523  df-er 8759  df-ec 8761  df-qs 8765  df-map 8882  df-pm 8883  df-ixp 8952  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-fsupp 9428  df-fi 9476  df-sup 9507  df-inf 9508  df-oi 9575  df-dju 9966  df-card 10004  df-acn 10007  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-xnn0 12622  df-z 12636  df-dec 12755  df-uz 12900  df-q 13010  df-rp 13054  df-xneg 13171  df-xadd 13172  df-xmul 13173  df-ioo 13407  df-ioc 13408  df-ico 13409  df-icc 13410  df-fz 13564  df-fzo 13708  df-fl 13839  df-mod 13917  df-seq 14049  df-exp 14109  df-fac 14319  df-bc 14348  df-hash 14376  df-word 14559  df-concat 14615  df-s1 14640  df-shft 15112  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-limsup 15513  df-clim 15530  df-rlim 15531  df-sum 15731  df-ef 16109  df-sin 16111  df-cos 16112  df-pi 16114  df-dvds 16297  df-gcd 16535  df-prm 16713  df-phi 16808  df-pc 16879  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-starv 17321  df-sca 17322  df-vsca 17323  df-ip 17324  df-tset 17325  df-ple 17326  df-ds 17328  df-unif 17329  df-hom 17330  df-cco 17331  df-rest 17477  df-topn 17478  df-0g 17496  df-gsum 17497  df-topgen 17498  df-pt 17499  df-prds 17502  df-xrs 17557  df-qtop 17562  df-imas 17563  df-qus 17564  df-xps 17565  df-mre 17639  df-mrc 17640  df-acs 17642  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-mhm 18813  df-submnd 18814  df-grp 18971  df-minusg 18972  df-sbg 18973  df-mulg 19103  df-subg 19158  df-nsg 19159  df-eqg 19160  df-ghm 19248  df-gim 19294  df-ga 19325  df-cntz 19352  df-oppg 19381  df-od 19565  df-gex 19566  df-pgp 19567  df-lsm 19673  df-pj1 19674  df-cmn 19819  df-abl 19820  df-cyg 19915  df-dprd 20034  df-dpj 20035  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-cring 20258  df-oppr 20355  df-dvdsr 20378  df-unit 20379  df-invr 20409  df-dvr 20422  df-rhm 20493  df-subrng 20567  df-subrg 20592  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-top 22914  df-topon 22931  df-topsp 22953  df-bases 22967  df-cld 23041  df-ntr 23042  df-cls 23043  df-nei 23120  df-lp 23158  df-perf 23159  df-cn 23249  df-cnp 23250  df-haus 23337  df-tx 23584  df-hmeo 23777  df-fil 23868  df-fm 23960  df-flim 23961  df-flf 23962  df-xms 24344  df-ms 24345  df-tms 24346  df-cncf 24916  df-0p 25717  df-limc 25913  df-dv 25914  df-ply 26239  df-idp 26240  df-coe 26241  df-dgr 26242  df-quot 26343  df-log 26607  df-cxp 26608  df-dchr 27286
This theorem is referenced by:  rpvmasum2  27565
  Copyright terms: Public domain W3C validator