MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sum2dchr Structured version   Visualization version   GIF version

Theorem sum2dchr 25212
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑥(𝐴) for fixed 𝐴 and all 𝑥 is 0 if 𝐴 = 1 and ϕ(𝑛) otherwise. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sum2dchr.g 𝐺 = (DChr‘𝑁)
sum2dchr.d 𝐷 = (Base‘𝐺)
sum2dchr.z 𝑍 = (ℤ/nℤ‘𝑁)
sum2dchr.b 𝐵 = (Base‘𝑍)
sum2dchr.u 𝑈 = (Unit‘𝑍)
sum2dchr.n (𝜑𝑁 ∈ ℕ)
sum2dchr.a (𝜑𝐴𝐵)
sum2dchr.c (𝜑𝐶𝑈)
Assertion
Ref Expression
sum2dchr (𝜑 → Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)

Proof of Theorem sum2dchr
StepHypRef Expression
1 sum2dchr.g . . 3 𝐺 = (DChr‘𝑁)
2 sum2dchr.d . . 3 𝐷 = (Base‘𝐺)
3 sum2dchr.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
4 eqid 2806 . . 3 (1r𝑍) = (1r𝑍)
5 sum2dchr.b . . 3 𝐵 = (Base‘𝑍)
6 sum2dchr.n . . 3 (𝜑𝑁 ∈ ℕ)
76nnnn0d 11613 . . . . 5 (𝜑𝑁 ∈ ℕ0)
83zncrng 20096 . . . . 5 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
9 crngring 18756 . . . . 5 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
107, 8, 93syl 18 . . . 4 (𝜑𝑍 ∈ Ring)
11 sum2dchr.a . . . 4 (𝜑𝐴𝐵)
12 sum2dchr.c . . . 4 (𝜑𝐶𝑈)
13 sum2dchr.u . . . . 5 𝑈 = (Unit‘𝑍)
14 eqid 2806 . . . . 5 (/r𝑍) = (/r𝑍)
155, 13, 14dvrcl 18884 . . . 4 ((𝑍 ∈ Ring ∧ 𝐴𝐵𝐶𝑈) → (𝐴(/r𝑍)𝐶) ∈ 𝐵)
1610, 11, 12, 15syl3anc 1483 . . 3 (𝜑 → (𝐴(/r𝑍)𝐶) ∈ 𝐵)
171, 2, 3, 4, 5, 6, 16sumdchr 25210 . 2 (𝜑 → Σ𝑥𝐷 (𝑥‘(𝐴(/r𝑍)𝐶)) = if((𝐴(/r𝑍)𝐶) = (1r𝑍), (ϕ‘𝑁), 0))
18 eqid 2806 . . . . . . . 8 (.r𝑍) = (.r𝑍)
19 eqid 2806 . . . . . . . 8 (invr𝑍) = (invr𝑍)
205, 18, 13, 19, 14dvrval 18883 . . . . . . 7 ((𝐴𝐵𝐶𝑈) → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2111, 12, 20syl2anc 575 . . . . . 6 (𝜑 → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2221adantr 468 . . . . 5 ((𝜑𝑥𝐷) → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2322fveq2d 6408 . . . 4 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(/r𝑍)𝐶)) = (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))))
241, 3, 2dchrmhm 25179 . . . . . 6 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
25 simpr 473 . . . . . 6 ((𝜑𝑥𝐷) → 𝑥𝐷)
2624, 25sseldi 3796 . . . . 5 ((𝜑𝑥𝐷) → 𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
2711adantr 468 . . . . 5 ((𝜑𝑥𝐷) → 𝐴𝐵)
285, 13unitss 18858 . . . . . 6 𝑈𝐵
2913, 19unitinvcl 18872 . . . . . . . 8 ((𝑍 ∈ Ring ∧ 𝐶𝑈) → ((invr𝑍)‘𝐶) ∈ 𝑈)
3010, 12, 29syl2anc 575 . . . . . . 7 (𝜑 → ((invr𝑍)‘𝐶) ∈ 𝑈)
3130adantr 468 . . . . . 6 ((𝜑𝑥𝐷) → ((invr𝑍)‘𝐶) ∈ 𝑈)
3228, 31sseldi 3796 . . . . 5 ((𝜑𝑥𝐷) → ((invr𝑍)‘𝐶) ∈ 𝐵)
33 eqid 2806 . . . . . . 7 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3433, 5mgpbas 18693 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑍))
3533, 18mgpplusg 18691 . . . . . 6 (.r𝑍) = (+g‘(mulGrp‘𝑍))
36 eqid 2806 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
37 cnfldmul 19956 . . . . . . 7 · = (.r‘ℂfld)
3836, 37mgpplusg 18691 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
3934, 35, 38mhmlin 17543 . . . . 5 ((𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴𝐵 ∧ ((invr𝑍)‘𝐶) ∈ 𝐵) → (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))))
4026, 27, 32, 39syl3anc 1483 . . . 4 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))))
41 eqid 2806 . . . . . . . 8 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
42 eqid 2806 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
431, 3, 2, 13, 41, 42, 25dchrghm 25194 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑥𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
4412adantr 468 . . . . . . 7 ((𝜑𝑥𝐷) → 𝐶𝑈)
4513, 41unitgrpbas 18864 . . . . . . . 8 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
4613, 41, 19invrfval 18871 . . . . . . . 8 (invr𝑍) = (invg‘((mulGrp‘𝑍) ↾s 𝑈))
47 cnfldbas 19954 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
48 cnfld0 19974 . . . . . . . . . 10 0 = (0g‘ℂfld)
49 cndrng 19979 . . . . . . . . . 10 fld ∈ DivRing
5047, 48, 49drngui 18953 . . . . . . . . 9 (ℂ ∖ {0}) = (Unit‘ℂfld)
51 eqid 2806 . . . . . . . . 9 (invr‘ℂfld) = (invr‘ℂfld)
5250, 42, 51invrfval 18871 . . . . . . . 8 (invr‘ℂfld) = (invg‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
5345, 46, 52ghminv 17865 . . . . . . 7 (((𝑥𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ 𝐶𝑈) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)))
5443, 44, 53syl2anc 575 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)))
55 fvres 6423 . . . . . . 7 (((invr𝑍)‘𝐶) ∈ 𝑈 → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = (𝑥‘((invr𝑍)‘𝐶)))
5631, 55syl 17 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = (𝑥‘((invr𝑍)‘𝐶)))
57 fvres 6423 . . . . . . . . 9 (𝐶𝑈 → ((𝑥𝑈)‘𝐶) = (𝑥𝐶))
5844, 57syl 17 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘𝐶) = (𝑥𝐶))
5958fveq2d 6408 . . . . . . 7 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)) = ((invr‘ℂfld)‘(𝑥𝐶)))
601, 3, 2, 5, 25dchrf 25180 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝑥:𝐵⟶ℂ)
6128, 44sseldi 3796 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐶𝐵)
6260, 61ffvelrnd 6578 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑥𝐶) ∈ ℂ)
631, 3, 2, 5, 13, 25, 61dchrn0 25188 . . . . . . . . 9 ((𝜑𝑥𝐷) → ((𝑥𝐶) ≠ 0 ↔ 𝐶𝑈))
6444, 63mpbird 248 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑥𝐶) ≠ 0)
65 cnfldinv 19981 . . . . . . . 8 (((𝑥𝐶) ∈ ℂ ∧ (𝑥𝐶) ≠ 0) → ((invr‘ℂfld)‘(𝑥𝐶)) = (1 / (𝑥𝐶)))
6662, 64, 65syl2anc 575 . . . . . . 7 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘(𝑥𝐶)) = (1 / (𝑥𝐶)))
67 recval 14281 . . . . . . . . 9 (((𝑥𝐶) ∈ ℂ ∧ (𝑥𝐶) ≠ 0) → (1 / (𝑥𝐶)) = ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)))
6862, 64, 67syl2anc 575 . . . . . . . 8 ((𝜑𝑥𝐷) → (1 / (𝑥𝐶)) = ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)))
691, 2, 25, 3, 13, 44dchrabs 25198 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → (abs‘(𝑥𝐶)) = 1)
7069oveq1d 6885 . . . . . . . . . 10 ((𝜑𝑥𝐷) → ((abs‘(𝑥𝐶))↑2) = (1↑2))
71 sq1 13177 . . . . . . . . . 10 (1↑2) = 1
7270, 71syl6eq 2856 . . . . . . . . 9 ((𝜑𝑥𝐷) → ((abs‘(𝑥𝐶))↑2) = 1)
7372oveq2d 6886 . . . . . . . 8 ((𝜑𝑥𝐷) → ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)) = ((∗‘(𝑥𝐶)) / 1))
7462cjcld 14155 . . . . . . . . 9 ((𝜑𝑥𝐷) → (∗‘(𝑥𝐶)) ∈ ℂ)
7574div1d 11074 . . . . . . . 8 ((𝜑𝑥𝐷) → ((∗‘(𝑥𝐶)) / 1) = (∗‘(𝑥𝐶)))
7668, 73, 753eqtrd 2844 . . . . . . 7 ((𝜑𝑥𝐷) → (1 / (𝑥𝐶)) = (∗‘(𝑥𝐶)))
7759, 66, 763eqtrd 2844 . . . . . 6 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)) = (∗‘(𝑥𝐶)))
7854, 56, 773eqtr3d 2848 . . . . 5 ((𝜑𝑥𝐷) → (𝑥‘((invr𝑍)‘𝐶)) = (∗‘(𝑥𝐶)))
7978oveq2d 6886 . . . 4 ((𝜑𝑥𝐷) → ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (∗‘(𝑥𝐶))))
8023, 40, 793eqtrd 2844 . . 3 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(/r𝑍)𝐶)) = ((𝑥𝐴) · (∗‘(𝑥𝐶))))
8180sumeq2dv 14652 . 2 (𝜑 → Σ𝑥𝐷 (𝑥‘(𝐴(/r𝑍)𝐶)) = Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))))
825, 13, 14, 4dvreq1 18891 . . . 4 ((𝑍 ∈ Ring ∧ 𝐴𝐵𝐶𝑈) → ((𝐴(/r𝑍)𝐶) = (1r𝑍) ↔ 𝐴 = 𝐶))
8310, 11, 12, 82syl3anc 1483 . . 3 (𝜑 → ((𝐴(/r𝑍)𝐶) = (1r𝑍) ↔ 𝐴 = 𝐶))
8483ifbid 4301 . 2 (𝜑 → if((𝐴(/r𝑍)𝐶) = (1r𝑍), (ϕ‘𝑁), 0) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
8517, 81, 843eqtr3d 2848 1 (𝜑 → Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wne 2978  cdif 3766  ifcif 4279  {csn 4370  cres 5313  cfv 6097  (class class class)co 6870  cc 10215  0cc0 10217  1c1 10218   · cmul 10222   / cdiv 10965  cn 11301  2c2 11352  0cn0 11555  cexp 13079  ccj 14055  abscabs 14193  Σcsu 14635  ϕcphi 15682  Basecbs 16064  s cress 16065  .rcmulr 16150   MndHom cmhm 17534   GrpHom cghm 17855  mulGrpcmgp 18687  1rcur 18699  Ringcrg 18745  CRingccrg 18746  Unitcui 18837  invrcinvr 18869  /rcdvr 18880  fldccnfld 19950  ℤ/nczn 20055  DChrcdchr 25170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-inf2 8781  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-pre-sup 10295  ax-addf 10296  ax-mulf 10297
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-disj 4813  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-isom 6106  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-of 7123  df-rpss 7163  df-om 7292  df-1st 7394  df-2nd 7395  df-supp 7526  df-tpos 7583  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-2o 7793  df-oadd 7796  df-omul 7797  df-er 7975  df-ec 7977  df-qs 7981  df-map 8090  df-pm 8091  df-ixp 8142  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-fsupp 8511  df-fi 8552  df-sup 8583  df-inf 8584  df-oi 8650  df-card 9044  df-acn 9047  df-cda 9271  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-xnn0 11626  df-z 11640  df-dec 11756  df-uz 11901  df-q 12004  df-rp 12043  df-xneg 12158  df-xadd 12159  df-xmul 12160  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12546  df-fzo 12686  df-fl 12813  df-mod 12889  df-seq 13021  df-exp 13080  df-fac 13277  df-bc 13306  df-hash 13334  df-word 13506  df-concat 13508  df-s1 13509  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15014  df-sin 15016  df-cos 15017  df-pi 15019  df-dvds 15200  df-gcd 15432  df-prm 15600  df-phi 15684  df-pc 15755  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-qus 16370  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17789  df-nsg 17790  df-eqg 17791  df-ghm 17856  df-gim 17899  df-ga 17920  df-cntz 17947  df-oppg 17973  df-od 18145  df-gex 18146  df-pgp 18147  df-lsm 18248  df-pj1 18249  df-cmn 18392  df-abl 18393  df-cyg 18477  df-dprd 18592  df-dpj 18593  df-mgp 18688  df-ur 18700  df-ring 18747  df-cring 18748  df-oppr 18821  df-dvdsr 18839  df-unit 18840  df-invr 18870  df-dvr 18881  df-rnghom 18915  df-drng 18949  df-subrg 18978  df-lmod 19065  df-lss 19133  df-lsp 19175  df-sra 19377  df-rgmod 19378  df-lidl 19379  df-rsp 19380  df-2idl 19437  df-psmet 19942  df-xmet 19943  df-met 19944  df-bl 19945  df-mopn 19946  df-fbas 19947  df-fg 19948  df-cnfld 19951  df-zring 20023  df-zrh 20056  df-zn 20059  df-top 20909  df-topon 20926  df-topsp 20948  df-bases 20961  df-cld 21034  df-ntr 21035  df-cls 21036  df-nei 21113  df-lp 21151  df-perf 21152  df-cn 21242  df-cnp 21243  df-haus 21330  df-tx 21576  df-hmeo 21769  df-fil 21860  df-fm 21952  df-flim 21953  df-flf 21954  df-xms 22335  df-ms 22336  df-tms 22337  df-cncf 22891  df-0p 23650  df-limc 23843  df-dv 23844  df-ply 24157  df-idp 24158  df-coe 24159  df-dgr 24160  df-quot 24259  df-log 24516  df-cxp 24517  df-dchr 25171
This theorem is referenced by:  rpvmasum2  25414
  Copyright terms: Public domain W3C validator