MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sum2dchr Structured version   Visualization version   GIF version

Theorem sum2dchr 27183
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑥(𝐴) for fixed 𝐴 and all 𝑥 is 0 if 𝐴 = 1 and ϕ(𝑛) otherwise. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sum2dchr.g 𝐺 = (DChr‘𝑁)
sum2dchr.d 𝐷 = (Base‘𝐺)
sum2dchr.z 𝑍 = (ℤ/nℤ‘𝑁)
sum2dchr.b 𝐵 = (Base‘𝑍)
sum2dchr.u 𝑈 = (Unit‘𝑍)
sum2dchr.n (𝜑𝑁 ∈ ℕ)
sum2dchr.a (𝜑𝐴𝐵)
sum2dchr.c (𝜑𝐶𝑈)
Assertion
Ref Expression
sum2dchr (𝜑 → Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)

Proof of Theorem sum2dchr
StepHypRef Expression
1 sum2dchr.g . . 3 𝐺 = (DChr‘𝑁)
2 sum2dchr.d . . 3 𝐷 = (Base‘𝐺)
3 sum2dchr.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
4 eqid 2729 . . 3 (1r𝑍) = (1r𝑍)
5 sum2dchr.b . . 3 𝐵 = (Base‘𝑍)
6 sum2dchr.n . . 3 (𝜑𝑁 ∈ ℕ)
76nnnn0d 12445 . . . . 5 (𝜑𝑁 ∈ ℕ0)
83zncrng 21451 . . . . 5 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
9 crngring 20130 . . . . 5 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
107, 8, 93syl 18 . . . 4 (𝜑𝑍 ∈ Ring)
11 sum2dchr.a . . . 4 (𝜑𝐴𝐵)
12 sum2dchr.c . . . 4 (𝜑𝐶𝑈)
13 sum2dchr.u . . . . 5 𝑈 = (Unit‘𝑍)
14 eqid 2729 . . . . 5 (/r𝑍) = (/r𝑍)
155, 13, 14dvrcl 20289 . . . 4 ((𝑍 ∈ Ring ∧ 𝐴𝐵𝐶𝑈) → (𝐴(/r𝑍)𝐶) ∈ 𝐵)
1610, 11, 12, 15syl3anc 1373 . . 3 (𝜑 → (𝐴(/r𝑍)𝐶) ∈ 𝐵)
171, 2, 3, 4, 5, 6, 16sumdchr 27181 . 2 (𝜑 → Σ𝑥𝐷 (𝑥‘(𝐴(/r𝑍)𝐶)) = if((𝐴(/r𝑍)𝐶) = (1r𝑍), (ϕ‘𝑁), 0))
18 eqid 2729 . . . . . . . 8 (.r𝑍) = (.r𝑍)
19 eqid 2729 . . . . . . . 8 (invr𝑍) = (invr𝑍)
205, 18, 13, 19, 14dvrval 20288 . . . . . . 7 ((𝐴𝐵𝐶𝑈) → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2111, 12, 20syl2anc 584 . . . . . 6 (𝜑 → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2221adantr 480 . . . . 5 ((𝜑𝑥𝐷) → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2322fveq2d 6826 . . . 4 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(/r𝑍)𝐶)) = (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))))
241, 3, 2dchrmhm 27150 . . . . . 6 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
25 simpr 484 . . . . . 6 ((𝜑𝑥𝐷) → 𝑥𝐷)
2624, 25sselid 3933 . . . . 5 ((𝜑𝑥𝐷) → 𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
2711adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝐴𝐵)
285, 13unitss 20261 . . . . . 6 𝑈𝐵
2913, 19unitinvcl 20275 . . . . . . . 8 ((𝑍 ∈ Ring ∧ 𝐶𝑈) → ((invr𝑍)‘𝐶) ∈ 𝑈)
3010, 12, 29syl2anc 584 . . . . . . 7 (𝜑 → ((invr𝑍)‘𝐶) ∈ 𝑈)
3130adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → ((invr𝑍)‘𝐶) ∈ 𝑈)
3228, 31sselid 3933 . . . . 5 ((𝜑𝑥𝐷) → ((invr𝑍)‘𝐶) ∈ 𝐵)
33 eqid 2729 . . . . . . 7 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3433, 5mgpbas 20030 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑍))
3533, 18mgpplusg 20029 . . . . . 6 (.r𝑍) = (+g‘(mulGrp‘𝑍))
36 eqid 2729 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
37 cnfldmul 21269 . . . . . . 7 · = (.r‘ℂfld)
3836, 37mgpplusg 20029 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
3934, 35, 38mhmlin 18667 . . . . 5 ((𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴𝐵 ∧ ((invr𝑍)‘𝐶) ∈ 𝐵) → (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))))
4026, 27, 32, 39syl3anc 1373 . . . 4 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))))
41 eqid 2729 . . . . . . . 8 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
42 eqid 2729 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
431, 3, 2, 13, 41, 42, 25dchrghm 27165 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑥𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
4412adantr 480 . . . . . . 7 ((𝜑𝑥𝐷) → 𝐶𝑈)
4513, 41unitgrpbas 20267 . . . . . . . 8 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
4613, 41, 19invrfval 20274 . . . . . . . 8 (invr𝑍) = (invg‘((mulGrp‘𝑍) ↾s 𝑈))
47 cnfldbas 21265 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
48 cnfld0 21299 . . . . . . . . . 10 0 = (0g‘ℂfld)
49 cndrng 21305 . . . . . . . . . 10 fld ∈ DivRing
5047, 48, 49drngui 20620 . . . . . . . . 9 (ℂ ∖ {0}) = (Unit‘ℂfld)
51 eqid 2729 . . . . . . . . 9 (invr‘ℂfld) = (invr‘ℂfld)
5250, 42, 51invrfval 20274 . . . . . . . 8 (invr‘ℂfld) = (invg‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
5345, 46, 52ghminv 19102 . . . . . . 7 (((𝑥𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ 𝐶𝑈) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)))
5443, 44, 53syl2anc 584 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)))
5531fvresd 6842 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = (𝑥‘((invr𝑍)‘𝐶)))
5644fvresd 6842 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘𝐶) = (𝑥𝐶))
5756fveq2d 6826 . . . . . . 7 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)) = ((invr‘ℂfld)‘(𝑥𝐶)))
581, 3, 2, 5, 25dchrf 27151 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝑥:𝐵⟶ℂ)
5928, 44sselid 3933 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐶𝐵)
6058, 59ffvelcdmd 7019 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑥𝐶) ∈ ℂ)
611, 3, 2, 5, 13, 25, 59dchrn0 27159 . . . . . . . . 9 ((𝜑𝑥𝐷) → ((𝑥𝐶) ≠ 0 ↔ 𝐶𝑈))
6244, 61mpbird 257 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑥𝐶) ≠ 0)
63 cnfldinv 21309 . . . . . . . 8 (((𝑥𝐶) ∈ ℂ ∧ (𝑥𝐶) ≠ 0) → ((invr‘ℂfld)‘(𝑥𝐶)) = (1 / (𝑥𝐶)))
6460, 62, 63syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘(𝑥𝐶)) = (1 / (𝑥𝐶)))
65 recval 15230 . . . . . . . . 9 (((𝑥𝐶) ∈ ℂ ∧ (𝑥𝐶) ≠ 0) → (1 / (𝑥𝐶)) = ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)))
6660, 62, 65syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐷) → (1 / (𝑥𝐶)) = ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)))
671, 2, 25, 3, 13, 44dchrabs 27169 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → (abs‘(𝑥𝐶)) = 1)
6867oveq1d 7364 . . . . . . . . . 10 ((𝜑𝑥𝐷) → ((abs‘(𝑥𝐶))↑2) = (1↑2))
69 sq1 14102 . . . . . . . . . 10 (1↑2) = 1
7068, 69eqtrdi 2780 . . . . . . . . 9 ((𝜑𝑥𝐷) → ((abs‘(𝑥𝐶))↑2) = 1)
7170oveq2d 7365 . . . . . . . 8 ((𝜑𝑥𝐷) → ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)) = ((∗‘(𝑥𝐶)) / 1))
7260cjcld 15103 . . . . . . . . 9 ((𝜑𝑥𝐷) → (∗‘(𝑥𝐶)) ∈ ℂ)
7372div1d 11892 . . . . . . . 8 ((𝜑𝑥𝐷) → ((∗‘(𝑥𝐶)) / 1) = (∗‘(𝑥𝐶)))
7466, 71, 733eqtrd 2768 . . . . . . 7 ((𝜑𝑥𝐷) → (1 / (𝑥𝐶)) = (∗‘(𝑥𝐶)))
7557, 64, 743eqtrd 2768 . . . . . 6 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)) = (∗‘(𝑥𝐶)))
7654, 55, 753eqtr3d 2772 . . . . 5 ((𝜑𝑥𝐷) → (𝑥‘((invr𝑍)‘𝐶)) = (∗‘(𝑥𝐶)))
7776oveq2d 7365 . . . 4 ((𝜑𝑥𝐷) → ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (∗‘(𝑥𝐶))))
7823, 40, 773eqtrd 2768 . . 3 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(/r𝑍)𝐶)) = ((𝑥𝐴) · (∗‘(𝑥𝐶))))
7978sumeq2dv 15609 . 2 (𝜑 → Σ𝑥𝐷 (𝑥‘(𝐴(/r𝑍)𝐶)) = Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))))
805, 13, 14, 4dvreq1 20296 . . . 4 ((𝑍 ∈ Ring ∧ 𝐴𝐵𝐶𝑈) → ((𝐴(/r𝑍)𝐶) = (1r𝑍) ↔ 𝐴 = 𝐶))
8110, 11, 12, 80syl3anc 1373 . . 3 (𝜑 → ((𝐴(/r𝑍)𝐶) = (1r𝑍) ↔ 𝐴 = 𝐶))
8281ifbid 4500 . 2 (𝜑 → if((𝐴(/r𝑍)𝐶) = (1r𝑍), (ϕ‘𝑁), 0) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
8317, 79, 823eqtr3d 2772 1 (𝜑 → Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3900  ifcif 4476  {csn 4577  cres 5621  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   · cmul 11014   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  cexp 13968  ccj 15003  abscabs 15141  Σcsu 15593  ϕcphi 16675  Basecbs 17120  s cress 17141  .rcmulr 17162   MndHom cmhm 18655   GrpHom cghm 19091  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119  Unitcui 20240  invrcinvr 20272  /rcdvr 20285  fldccnfld 21261  ℤ/nczn 21409  DChrcdchr 27141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-rpss 7659  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-qus 17413  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-gim 19138  df-ga 19169  df-cntz 19196  df-oppg 19225  df-od 19407  df-gex 19408  df-pgp 19409  df-lsm 19515  df-pj1 19516  df-cmn 19661  df-abl 19662  df-cyg 19757  df-dprd 19876  df-dpj 19877  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-2idl 21157  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-zn 21413  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-0p 25569  df-limc 25765  df-dv 25766  df-ply 26091  df-idp 26092  df-coe 26093  df-dgr 26094  df-quot 26197  df-log 26463  df-cxp 26464  df-dchr 27142
This theorem is referenced by:  rpvmasum2  27421
  Copyright terms: Public domain W3C validator