Proof of Theorem sum2dchr
Step | Hyp | Ref
| Expression |
1 | | sum2dchr.g |
. . 3
⊢ 𝐺 = (DChr‘𝑁) |
2 | | sum2dchr.d |
. . 3
⊢ 𝐷 = (Base‘𝐺) |
3 | | sum2dchr.z |
. . 3
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
4 | | eqid 2738 |
. . 3
⊢
(1r‘𝑍) = (1r‘𝑍) |
5 | | sum2dchr.b |
. . 3
⊢ 𝐵 = (Base‘𝑍) |
6 | | sum2dchr.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
7 | 6 | nnnn0d 12223 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
8 | 3 | zncrng 20664 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 𝑍 ∈
CRing) |
9 | | crngring 19710 |
. . . . 5
⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) |
10 | 7, 8, 9 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ Ring) |
11 | | sum2dchr.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
12 | | sum2dchr.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
13 | | sum2dchr.u |
. . . . 5
⊢ 𝑈 = (Unit‘𝑍) |
14 | | eqid 2738 |
. . . . 5
⊢
(/r‘𝑍) = (/r‘𝑍) |
15 | 5, 13, 14 | dvrcl 19843 |
. . . 4
⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈) → (𝐴(/r‘𝑍)𝐶) ∈ 𝐵) |
16 | 10, 11, 12, 15 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (𝐴(/r‘𝑍)𝐶) ∈ 𝐵) |
17 | 1, 2, 3, 4, 5, 6, 16 | sumdchr 26325 |
. 2
⊢ (𝜑 → Σ𝑥 ∈ 𝐷 (𝑥‘(𝐴(/r‘𝑍)𝐶)) = if((𝐴(/r‘𝑍)𝐶) = (1r‘𝑍), (ϕ‘𝑁), 0)) |
18 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝑍) = (.r‘𝑍) |
19 | | eqid 2738 |
. . . . . . . 8
⊢
(invr‘𝑍) = (invr‘𝑍) |
20 | 5, 18, 13, 19, 14 | dvrval 19842 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈) → (𝐴(/r‘𝑍)𝐶) = (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐶))) |
21 | 11, 12, 20 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐴(/r‘𝑍)𝐶) = (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐶))) |
22 | 21 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴(/r‘𝑍)𝐶) = (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐶))) |
23 | 22 | fveq2d 6760 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥‘(𝐴(/r‘𝑍)𝐶)) = (𝑥‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐶)))) |
24 | 1, 3, 2 | dchrmhm 26294 |
. . . . . 6
⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) |
25 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) |
26 | 24, 25 | sselid 3915 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) |
27 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝐵) |
28 | 5, 13 | unitss 19817 |
. . . . . 6
⊢ 𝑈 ⊆ 𝐵 |
29 | 13, 19 | unitinvcl 19831 |
. . . . . . . 8
⊢ ((𝑍 ∈ Ring ∧ 𝐶 ∈ 𝑈) → ((invr‘𝑍)‘𝐶) ∈ 𝑈) |
30 | 10, 12, 29 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 →
((invr‘𝑍)‘𝐶) ∈ 𝑈) |
31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invr‘𝑍)‘𝐶) ∈ 𝑈) |
32 | 28, 31 | sselid 3915 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invr‘𝑍)‘𝐶) ∈ 𝐵) |
33 | | eqid 2738 |
. . . . . . 7
⊢
(mulGrp‘𝑍) =
(mulGrp‘𝑍) |
34 | 33, 5 | mgpbas 19641 |
. . . . . 6
⊢ 𝐵 =
(Base‘(mulGrp‘𝑍)) |
35 | 33, 18 | mgpplusg 19639 |
. . . . . 6
⊢
(.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
36 | | eqid 2738 |
. . . . . . 7
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
37 | | cnfldmul 20516 |
. . . . . . 7
⊢ ·
= (.r‘ℂfld) |
38 | 36, 37 | mgpplusg 19639 |
. . . . . 6
⊢ ·
= (+g‘(mulGrp‘ℂfld)) |
39 | 34, 35, 38 | mhmlin 18352 |
. . . . 5
⊢ ((𝑥 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ 𝐴 ∈ 𝐵 ∧ ((invr‘𝑍)‘𝐶) ∈ 𝐵) → (𝑥‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐶))) = ((𝑥‘𝐴) · (𝑥‘((invr‘𝑍)‘𝐶)))) |
40 | 26, 27, 32, 39 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐶))) = ((𝑥‘𝐴) · (𝑥‘((invr‘𝑍)‘𝐶)))) |
41 | | eqid 2738 |
. . . . . . . 8
⊢
((mulGrp‘𝑍)
↾s 𝑈) =
((mulGrp‘𝑍)
↾s 𝑈) |
42 | | eqid 2738 |
. . . . . . . 8
⊢
((mulGrp‘ℂfld) ↾s (ℂ
∖ {0})) = ((mulGrp‘ℂfld) ↾s
(ℂ ∖ {0})) |
43 | 1, 3, 2, 13, 41, 42, 25 | dchrghm 26309 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ↾ 𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom
((mulGrp‘ℂfld) ↾s (ℂ ∖
{0})))) |
44 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐶 ∈ 𝑈) |
45 | 13, 41 | unitgrpbas 19823 |
. . . . . . . 8
⊢ 𝑈 =
(Base‘((mulGrp‘𝑍) ↾s 𝑈)) |
46 | 13, 41, 19 | invrfval 19830 |
. . . . . . . 8
⊢
(invr‘𝑍) =
(invg‘((mulGrp‘𝑍) ↾s 𝑈)) |
47 | | cnfldbas 20514 |
. . . . . . . . . 10
⊢ ℂ =
(Base‘ℂfld) |
48 | | cnfld0 20534 |
. . . . . . . . . 10
⊢ 0 =
(0g‘ℂfld) |
49 | | cndrng 20539 |
. . . . . . . . . 10
⊢
ℂfld ∈ DivRing |
50 | 47, 48, 49 | drngui 19912 |
. . . . . . . . 9
⊢ (ℂ
∖ {0}) = (Unit‘ℂfld) |
51 | | eqid 2738 |
. . . . . . . . 9
⊢
(invr‘ℂfld) =
(invr‘ℂfld) |
52 | 50, 42, 51 | invrfval 19830 |
. . . . . . . 8
⊢
(invr‘ℂfld) =
(invg‘((mulGrp‘ℂfld)
↾s (ℂ ∖ {0}))) |
53 | 45, 46, 52 | ghminv 18756 |
. . . . . . 7
⊢ (((𝑥 ↾ 𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom
((mulGrp‘ℂfld) ↾s (ℂ ∖
{0}))) ∧ 𝐶 ∈ 𝑈) → ((𝑥 ↾ 𝑈)‘((invr‘𝑍)‘𝐶)) =
((invr‘ℂfld)‘((𝑥 ↾ 𝑈)‘𝐶))) |
54 | 43, 44, 53 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑥 ↾ 𝑈)‘((invr‘𝑍)‘𝐶)) =
((invr‘ℂfld)‘((𝑥 ↾ 𝑈)‘𝐶))) |
55 | 31 | fvresd 6776 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑥 ↾ 𝑈)‘((invr‘𝑍)‘𝐶)) = (𝑥‘((invr‘𝑍)‘𝐶))) |
56 | 44 | fvresd 6776 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑥 ↾ 𝑈)‘𝐶) = (𝑥‘𝐶)) |
57 | 56 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) →
((invr‘ℂfld)‘((𝑥 ↾ 𝑈)‘𝐶)) =
((invr‘ℂfld)‘(𝑥‘𝐶))) |
58 | 1, 3, 2, 5, 25 | dchrf 26295 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥:𝐵⟶ℂ) |
59 | 28, 44 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐶 ∈ 𝐵) |
60 | 58, 59 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥‘𝐶) ∈ ℂ) |
61 | 1, 3, 2, 5, 13, 25, 59 | dchrn0 26303 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑥‘𝐶) ≠ 0 ↔ 𝐶 ∈ 𝑈)) |
62 | 44, 61 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥‘𝐶) ≠ 0) |
63 | | cnfldinv 20541 |
. . . . . . . 8
⊢ (((𝑥‘𝐶) ∈ ℂ ∧ (𝑥‘𝐶) ≠ 0) →
((invr‘ℂfld)‘(𝑥‘𝐶)) = (1 / (𝑥‘𝐶))) |
64 | 60, 62, 63 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) →
((invr‘ℂfld)‘(𝑥‘𝐶)) = (1 / (𝑥‘𝐶))) |
65 | | recval 14962 |
. . . . . . . . 9
⊢ (((𝑥‘𝐶) ∈ ℂ ∧ (𝑥‘𝐶) ≠ 0) → (1 / (𝑥‘𝐶)) = ((∗‘(𝑥‘𝐶)) / ((abs‘(𝑥‘𝐶))↑2))) |
66 | 60, 62, 65 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (1 / (𝑥‘𝐶)) = ((∗‘(𝑥‘𝐶)) / ((abs‘(𝑥‘𝐶))↑2))) |
67 | 1, 2, 25, 3, 13, 44 | dchrabs 26313 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (abs‘(𝑥‘𝐶)) = 1) |
68 | 67 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((abs‘(𝑥‘𝐶))↑2) = (1↑2)) |
69 | | sq1 13840 |
. . . . . . . . . 10
⊢
(1↑2) = 1 |
70 | 68, 69 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((abs‘(𝑥‘𝐶))↑2) = 1) |
71 | 70 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((∗‘(𝑥‘𝐶)) / ((abs‘(𝑥‘𝐶))↑2)) = ((∗‘(𝑥‘𝐶)) / 1)) |
72 | 60 | cjcld 14835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∗‘(𝑥‘𝐶)) ∈ ℂ) |
73 | 72 | div1d 11673 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((∗‘(𝑥‘𝐶)) / 1) = (∗‘(𝑥‘𝐶))) |
74 | 66, 71, 73 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (1 / (𝑥‘𝐶)) = (∗‘(𝑥‘𝐶))) |
75 | 57, 64, 74 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) →
((invr‘ℂfld)‘((𝑥 ↾ 𝑈)‘𝐶)) = (∗‘(𝑥‘𝐶))) |
76 | 54, 55, 75 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥‘((invr‘𝑍)‘𝐶)) = (∗‘(𝑥‘𝐶))) |
77 | 76 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑥‘𝐴) · (𝑥‘((invr‘𝑍)‘𝐶))) = ((𝑥‘𝐴) · (∗‘(𝑥‘𝐶)))) |
78 | 23, 40, 77 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥‘(𝐴(/r‘𝑍)𝐶)) = ((𝑥‘𝐴) · (∗‘(𝑥‘𝐶)))) |
79 | 78 | sumeq2dv 15343 |
. 2
⊢ (𝜑 → Σ𝑥 ∈ 𝐷 (𝑥‘(𝐴(/r‘𝑍)𝐶)) = Σ𝑥 ∈ 𝐷 ((𝑥‘𝐴) · (∗‘(𝑥‘𝐶)))) |
80 | 5, 13, 14, 4 | dvreq1 19850 |
. . . 4
⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈) → ((𝐴(/r‘𝑍)𝐶) = (1r‘𝑍) ↔ 𝐴 = 𝐶)) |
81 | 10, 11, 12, 80 | syl3anc 1369 |
. . 3
⊢ (𝜑 → ((𝐴(/r‘𝑍)𝐶) = (1r‘𝑍) ↔ 𝐴 = 𝐶)) |
82 | 81 | ifbid 4479 |
. 2
⊢ (𝜑 → if((𝐴(/r‘𝑍)𝐶) = (1r‘𝑍), (ϕ‘𝑁), 0) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0)) |
83 | 17, 79, 82 | 3eqtr3d 2786 |
1
⊢ (𝜑 → Σ𝑥 ∈ 𝐷 ((𝑥‘𝐴) · (∗‘(𝑥‘𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0)) |