MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabs Structured version   Visualization version   GIF version

Theorem dchrabs 27313
Description: A Dirichlet character takes values on the unit circle. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g 𝐺 = (DChr‘𝑁)
dchrabs.d 𝐷 = (Base‘𝐺)
dchrabs.x (𝜑𝑋𝐷)
dchrabs.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrabs.u 𝑈 = (Unit‘𝑍)
dchrabs.a (𝜑𝐴𝑈)
Assertion
Ref Expression
dchrabs (𝜑 → (abs‘(𝑋𝐴)) = 1)

Proof of Theorem dchrabs
StepHypRef Expression
1 dchrabs.g . . . . . . 7 𝐺 = (DChr‘𝑁)
2 dchrabs.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrabs.d . . . . . . 7 𝐷 = (Base‘𝐺)
4 eqid 2734 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
5 dchrabs.x . . . . . . 7 (𝜑𝑋𝐷)
61, 2, 3, 4, 5dchrf 27295 . . . . . 6 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
7 dchrabs.u . . . . . . . 8 𝑈 = (Unit‘𝑍)
84, 7unitss 20397 . . . . . . 7 𝑈 ⊆ (Base‘𝑍)
9 dchrabs.a . . . . . . 7 (𝜑𝐴𝑈)
108, 9sselid 4000 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝑍))
116, 10ffvelcdmd 7117 . . . . 5 (𝜑 → (𝑋𝐴) ∈ ℂ)
121, 2, 3, 4, 7, 5, 10dchrn0 27303 . . . . . 6 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))
139, 12mpbird 257 . . . . 5 (𝜑 → (𝑋𝐴) ≠ 0)
1411, 13absrpcld 15493 . . . 4 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℝ+)
151, 3dchrrcl 27293 . . . . . . . 8 (𝑋𝐷𝑁 ∈ ℕ)
162, 4znfi 21596 . . . . . . . 8 (𝑁 ∈ ℕ → (Base‘𝑍) ∈ Fin)
175, 15, 163syl 18 . . . . . . 7 (𝜑 → (Base‘𝑍) ∈ Fin)
18 ssfi 9236 . . . . . . 7 (((Base‘𝑍) ∈ Fin ∧ 𝑈 ⊆ (Base‘𝑍)) → 𝑈 ∈ Fin)
1917, 8, 18sylancl 585 . . . . . 6 (𝜑𝑈 ∈ Fin)
20 hashcl 14401 . . . . . 6 (𝑈 ∈ Fin → (♯‘𝑈) ∈ ℕ0)
2119, 20syl 17 . . . . 5 (𝜑 → (♯‘𝑈) ∈ ℕ0)
2221nn0red 12610 . . . 4 (𝜑 → (♯‘𝑈) ∈ ℝ)
2322recnd 11314 . . . . 5 (𝜑 → (♯‘𝑈) ∈ ℂ)
249ne0d 4360 . . . . . . 7 (𝜑𝑈 ≠ ∅)
25 hashnncl 14411 . . . . . . . 8 (𝑈 ∈ Fin → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
2619, 25syl 17 . . . . . . 7 (𝜑 → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
2724, 26mpbird 257 . . . . . 6 (𝜑 → (♯‘𝑈) ∈ ℕ)
2827nnne0d 12339 . . . . 5 (𝜑 → (♯‘𝑈) ≠ 0)
2923, 28reccld 12059 . . . 4 (𝜑 → (1 / (♯‘𝑈)) ∈ ℂ)
3014, 22, 29cxpmuld 26788 . . 3 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐((♯‘𝑈) · (1 / (♯‘𝑈)))) = (((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈))↑𝑐(1 / (♯‘𝑈))))
3123, 28recidd 12061 . . . 4 (𝜑 → ((♯‘𝑈) · (1 / (♯‘𝑈))) = 1)
3231oveq2d 7461 . . 3 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐((♯‘𝑈) · (1 / (♯‘𝑈)))) = ((abs‘(𝑋𝐴))↑𝑐1))
3311abscld 15481 . . . . . . 7 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℝ)
3433recnd 11314 . . . . . 6 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℂ)
35 cxpexp 26719 . . . . . 6 (((abs‘(𝑋𝐴)) ∈ ℂ ∧ (♯‘𝑈) ∈ ℕ0) → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
3634, 21, 35syl2anc 583 . . . . 5 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
3711, 21absexpd 15497 . . . . 5 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
38 cnring 21421 . . . . . . . . . . 11 fld ∈ Ring
39 cnfldbas 21386 . . . . . . . . . . . . 13 ℂ = (Base‘ℂfld)
40 cnfld0 21423 . . . . . . . . . . . . 13 0 = (0g‘ℂfld)
41 cndrng 21429 . . . . . . . . . . . . 13 fld ∈ DivRing
4239, 40, 41drngui 20752 . . . . . . . . . . . 12 (ℂ ∖ {0}) = (Unit‘ℂfld)
43 eqid 2734 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
4442, 43unitsubm 20407 . . . . . . . . . . 11 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
4538, 44mp1i 13 . . . . . . . . . 10 (𝜑 → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
46 eldifsn 4811 . . . . . . . . . . 11 ((𝑋𝐴) ∈ (ℂ ∖ {0}) ↔ ((𝑋𝐴) ∈ ℂ ∧ (𝑋𝐴) ≠ 0))
4711, 13, 46sylanbrc 582 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ∈ (ℂ ∖ {0}))
48 eqid 2734 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
49 eqid 2734 . . . . . . . . . . 11 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
50 eqid 2734 . . . . . . . . . . 11 (.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) = (.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
5148, 49, 50submmulg 19153 . . . . . . . . . 10 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ (♯‘𝑈) ∈ ℕ0 ∧ (𝑋𝐴) ∈ (ℂ ∖ {0})) → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
5245, 21, 47, 51syl3anc 1371 . . . . . . . . 9 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
53 eqid 2734 . . . . . . . . . . . 12 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
541, 2, 3, 7, 53, 49, 5dchrghm 27309 . . . . . . . . . . 11 (𝜑 → (𝑋𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
5521nn0zd 12661 . . . . . . . . . . 11 (𝜑 → (♯‘𝑈) ∈ ℤ)
567, 53unitgrpbas 20403 . . . . . . . . . . . 12 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
57 eqid 2734 . . . . . . . . . . . 12 (.g‘((mulGrp‘𝑍) ↾s 𝑈)) = (.g‘((mulGrp‘𝑍) ↾s 𝑈))
5856, 57, 50ghmmulg 19263 . . . . . . . . . . 11 (((𝑋𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (♯‘𝑈) ∈ ℤ ∧ 𝐴𝑈) → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)))
5954, 55, 9, 58syl3anc 1371 . . . . . . . . . 10 (𝜑 → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)))
605, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
6160nnnn0d 12609 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
622zncrng 21581 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
63 crngring 20267 . . . . . . . . . . . . . . . 16 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
6461, 62, 633syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ Ring)
657, 53unitgrp 20404 . . . . . . . . . . . . . . 15 (𝑍 ∈ Ring → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
6664, 65syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
67 eqid 2734 . . . . . . . . . . . . . . 15 (od‘((mulGrp‘𝑍) ↾s 𝑈)) = (od‘((mulGrp‘𝑍) ↾s 𝑈))
6856, 67oddvds2 19603 . . . . . . . . . . . . . 14 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝑈 ∈ Fin ∧ 𝐴𝑈) → ((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈))
6966, 19, 9, 68syl3anc 1371 . . . . . . . . . . . . 13 (𝜑 → ((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈))
70 eqid 2734 . . . . . . . . . . . . . . 15 (0g‘((mulGrp‘𝑍) ↾s 𝑈)) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))
7156, 67, 57, 70oddvds 19584 . . . . . . . . . . . . . 14 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝐴𝑈 ∧ (♯‘𝑈) ∈ ℤ) → (((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈) ↔ ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))))
7266, 9, 55, 71syl3anc 1371 . . . . . . . . . . . . 13 (𝜑 → (((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈) ↔ ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))))
7369, 72mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
74 eqid 2734 . . . . . . . . . . . . . 14 (1r𝑍) = (1r𝑍)
757, 53, 74unitgrpid 20406 . . . . . . . . . . . . 13 (𝑍 ∈ Ring → (1r𝑍) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
7664, 75syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝑍) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
7773, 76eqtr4d 2777 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (1r𝑍))
7877fveq2d 6923 . . . . . . . . . 10 (𝜑 → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((𝑋𝑈)‘(1r𝑍)))
799fvresd 6939 . . . . . . . . . . 11 (𝜑 → ((𝑋𝑈)‘𝐴) = (𝑋𝐴))
8079oveq2d 7461 . . . . . . . . . 10 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
8159, 78, 803eqtr3d 2782 . . . . . . . . 9 (𝜑 → ((𝑋𝑈)‘(1r𝑍)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
827, 741unit 20395 . . . . . . . . . 10 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
83 fvres 6938 . . . . . . . . . 10 ((1r𝑍) ∈ 𝑈 → ((𝑋𝑈)‘(1r𝑍)) = (𝑋‘(1r𝑍)))
8464, 82, 833syl 18 . . . . . . . . 9 (𝜑 → ((𝑋𝑈)‘(1r𝑍)) = (𝑋‘(1r𝑍)))
8552, 81, 843eqtr2d 2780 . . . . . . . 8 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = (𝑋‘(1r𝑍)))
86 cnfldexp 21435 . . . . . . . . 9 (((𝑋𝐴) ∈ ℂ ∧ (♯‘𝑈) ∈ ℕ0) → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((𝑋𝐴)↑(♯‘𝑈)))
8711, 21, 86syl2anc 583 . . . . . . . 8 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((𝑋𝐴)↑(♯‘𝑈)))
881, 2, 3dchrmhm 27294 . . . . . . . . . 10 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
8988, 5sselid 4000 . . . . . . . . 9 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
90 eqid 2734 . . . . . . . . . . 11 (mulGrp‘𝑍) = (mulGrp‘𝑍)
9190, 74ringidval 20205 . . . . . . . . . 10 (1r𝑍) = (0g‘(mulGrp‘𝑍))
92 cnfld1 21424 . . . . . . . . . . 11 1 = (1r‘ℂfld)
9343, 92ringidval 20205 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
9491, 93mhm0 18824 . . . . . . . . 9 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
9589, 94syl 17 . . . . . . . 8 (𝜑 → (𝑋‘(1r𝑍)) = 1)
9685, 87, 953eqtr3d 2782 . . . . . . 7 (𝜑 → ((𝑋𝐴)↑(♯‘𝑈)) = 1)
9796fveq2d 6923 . . . . . 6 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = (abs‘1))
98 abs1 15342 . . . . . 6 (abs‘1) = 1
9997, 98eqtrdi 2790 . . . . 5 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = 1)
10036, 37, 993eqtr2d 2780 . . . 4 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = 1)
101100oveq1d 7460 . . 3 (𝜑 → (((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈))↑𝑐(1 / (♯‘𝑈))) = (1↑𝑐(1 / (♯‘𝑈))))
10230, 32, 1013eqtr3d 2782 . 2 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐1) = (1↑𝑐(1 / (♯‘𝑈))))
10334cxp1d 26757 . 2 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐1) = (abs‘(𝑋𝐴)))
104291cxpd 26758 . 2 (𝜑 → (1↑𝑐(1 / (♯‘𝑈))) = 1)
105102, 103, 1043eqtr3d 2782 1 (𝜑 → (abs‘(𝑋𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2103  wne 2942  cdif 3967  wss 3970  c0 4347  {csn 4648   class class class wbr 5169  cres 5701  cfv 6572  (class class class)co 7445  Fincfn 8999  cc 11178  0cc0 11180  1c1 11181   · cmul 11185   / cdiv 11943  cn 12289  0cn0 12549  cz 12635  cexp 14108  chash 14375  abscabs 15279  cdvds 16296  Basecbs 17253  s cress 17282  0gc0g 17494   MndHom cmhm 18811  SubMndcsubmnd 18812  Grpcgrp 18968  .gcmg 19102   GrpHom cghm 19247  odcod 19561  mulGrpcmgp 20156  1rcur 20203  Ringcrg 20255  CRingccrg 20256  Unitcui 20376  fldccnfld 21382  ℤ/nczn 21531  𝑐ccxp 26606  DChrcdchr 27285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-inf2 9706  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258  ax-addf 11259  ax-mulf 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-disj 5137  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-of 7710  df-om 7900  df-1st 8026  df-2nd 8027  df-supp 8198  df-tpos 8263  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-oadd 8522  df-omul 8523  df-er 8759  df-ec 8761  df-qs 8765  df-map 8882  df-pm 8883  df-ixp 8952  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-fsupp 9428  df-fi 9476  df-sup 9507  df-inf 9508  df-oi 9575  df-card 10004  df-acn 10007  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-z 12636  df-dec 12755  df-uz 12900  df-q 13010  df-rp 13054  df-xneg 13171  df-xadd 13172  df-xmul 13173  df-ioo 13407  df-ioc 13408  df-ico 13409  df-icc 13410  df-fz 13564  df-fzo 13708  df-fl 13839  df-mod 13917  df-seq 14049  df-exp 14109  df-fac 14319  df-bc 14348  df-hash 14376  df-shft 15112  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-limsup 15513  df-clim 15530  df-rlim 15531  df-sum 15731  df-ef 16109  df-sin 16111  df-cos 16112  df-pi 16114  df-dvds 16297  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-starv 17321  df-sca 17322  df-vsca 17323  df-ip 17324  df-tset 17325  df-ple 17326  df-ds 17328  df-unif 17329  df-hom 17330  df-cco 17331  df-rest 17477  df-topn 17478  df-0g 17496  df-gsum 17497  df-topgen 17498  df-pt 17499  df-prds 17502  df-xrs 17557  df-qtop 17562  df-imas 17563  df-qus 17564  df-xps 17565  df-mre 17639  df-mrc 17640  df-acs 17642  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-mhm 18813  df-submnd 18814  df-grp 18971  df-minusg 18972  df-sbg 18973  df-mulg 19103  df-subg 19158  df-nsg 19159  df-eqg 19160  df-ghm 19248  df-cntz 19352  df-od 19565  df-cmn 19819  df-abl 19820  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-cring 20258  df-oppr 20355  df-dvdsr 20378  df-unit 20379  df-invr 20409  df-dvr 20422  df-rhm 20493  df-subrng 20567  df-subrg 20592  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-top 22914  df-topon 22931  df-topsp 22953  df-bases 22967  df-cld 23041  df-ntr 23042  df-cls 23043  df-nei 23120  df-lp 23158  df-perf 23159  df-cn 23249  df-cnp 23250  df-haus 23337  df-tx 23584  df-hmeo 23777  df-fil 23868  df-fm 23960  df-flim 23961  df-flf 23962  df-xms 24344  df-ms 24345  df-tms 24346  df-cncf 24916  df-limc 25913  df-dv 25914  df-log 26607  df-cxp 26608  df-dchr 27286
This theorem is referenced by:  dchrinv  27314  dchrabs2  27315  sum2dchr  27327  dchrisum0flblem1  27561
  Copyright terms: Public domain W3C validator