MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabs Structured version   Visualization version   GIF version

Theorem dchrabs 26608
Description: A Dirichlet character takes values on the unit circle. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g 𝐺 = (DChr‘𝑁)
dchrabs.d 𝐷 = (Base‘𝐺)
dchrabs.x (𝜑𝑋𝐷)
dchrabs.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrabs.u 𝑈 = (Unit‘𝑍)
dchrabs.a (𝜑𝐴𝑈)
Assertion
Ref Expression
dchrabs (𝜑 → (abs‘(𝑋𝐴)) = 1)

Proof of Theorem dchrabs
StepHypRef Expression
1 dchrabs.g . . . . . . 7 𝐺 = (DChr‘𝑁)
2 dchrabs.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrabs.d . . . . . . 7 𝐷 = (Base‘𝐺)
4 eqid 2736 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
5 dchrabs.x . . . . . . 7 (𝜑𝑋𝐷)
61, 2, 3, 4, 5dchrf 26590 . . . . . 6 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
7 dchrabs.u . . . . . . . 8 𝑈 = (Unit‘𝑍)
84, 7unitss 20089 . . . . . . 7 𝑈 ⊆ (Base‘𝑍)
9 dchrabs.a . . . . . . 7 (𝜑𝐴𝑈)
108, 9sselid 3942 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝑍))
116, 10ffvelcdmd 7036 . . . . 5 (𝜑 → (𝑋𝐴) ∈ ℂ)
121, 2, 3, 4, 7, 5, 10dchrn0 26598 . . . . . 6 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))
139, 12mpbird 256 . . . . 5 (𝜑 → (𝑋𝐴) ≠ 0)
1411, 13absrpcld 15333 . . . 4 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℝ+)
151, 3dchrrcl 26588 . . . . . . . 8 (𝑋𝐷𝑁 ∈ ℕ)
162, 4znfi 20966 . . . . . . . 8 (𝑁 ∈ ℕ → (Base‘𝑍) ∈ Fin)
175, 15, 163syl 18 . . . . . . 7 (𝜑 → (Base‘𝑍) ∈ Fin)
18 ssfi 9117 . . . . . . 7 (((Base‘𝑍) ∈ Fin ∧ 𝑈 ⊆ (Base‘𝑍)) → 𝑈 ∈ Fin)
1917, 8, 18sylancl 586 . . . . . 6 (𝜑𝑈 ∈ Fin)
20 hashcl 14256 . . . . . 6 (𝑈 ∈ Fin → (♯‘𝑈) ∈ ℕ0)
2119, 20syl 17 . . . . 5 (𝜑 → (♯‘𝑈) ∈ ℕ0)
2221nn0red 12474 . . . 4 (𝜑 → (♯‘𝑈) ∈ ℝ)
2322recnd 11183 . . . . 5 (𝜑 → (♯‘𝑈) ∈ ℂ)
249ne0d 4295 . . . . . . 7 (𝜑𝑈 ≠ ∅)
25 hashnncl 14266 . . . . . . . 8 (𝑈 ∈ Fin → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
2619, 25syl 17 . . . . . . 7 (𝜑 → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
2724, 26mpbird 256 . . . . . 6 (𝜑 → (♯‘𝑈) ∈ ℕ)
2827nnne0d 12203 . . . . 5 (𝜑 → (♯‘𝑈) ≠ 0)
2923, 28reccld 11924 . . . 4 (𝜑 → (1 / (♯‘𝑈)) ∈ ℂ)
3014, 22, 29cxpmuld 26091 . . 3 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐((♯‘𝑈) · (1 / (♯‘𝑈)))) = (((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈))↑𝑐(1 / (♯‘𝑈))))
3123, 28recidd 11926 . . . 4 (𝜑 → ((♯‘𝑈) · (1 / (♯‘𝑈))) = 1)
3231oveq2d 7373 . . 3 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐((♯‘𝑈) · (1 / (♯‘𝑈)))) = ((abs‘(𝑋𝐴))↑𝑐1))
3311abscld 15321 . . . . . . 7 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℝ)
3433recnd 11183 . . . . . 6 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℂ)
35 cxpexp 26023 . . . . . 6 (((abs‘(𝑋𝐴)) ∈ ℂ ∧ (♯‘𝑈) ∈ ℕ0) → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
3634, 21, 35syl2anc 584 . . . . 5 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
3711, 21absexpd 15337 . . . . 5 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
38 cnring 20819 . . . . . . . . . . 11 fld ∈ Ring
39 cnfldbas 20800 . . . . . . . . . . . . 13 ℂ = (Base‘ℂfld)
40 cnfld0 20821 . . . . . . . . . . . . 13 0 = (0g‘ℂfld)
41 cndrng 20826 . . . . . . . . . . . . 13 fld ∈ DivRing
4239, 40, 41drngui 20191 . . . . . . . . . . . 12 (ℂ ∖ {0}) = (Unit‘ℂfld)
43 eqid 2736 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
4442, 43unitsubm 20099 . . . . . . . . . . 11 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
4538, 44mp1i 13 . . . . . . . . . 10 (𝜑 → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
46 eldifsn 4747 . . . . . . . . . . 11 ((𝑋𝐴) ∈ (ℂ ∖ {0}) ↔ ((𝑋𝐴) ∈ ℂ ∧ (𝑋𝐴) ≠ 0))
4711, 13, 46sylanbrc 583 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ∈ (ℂ ∖ {0}))
48 eqid 2736 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
49 eqid 2736 . . . . . . . . . . 11 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
50 eqid 2736 . . . . . . . . . . 11 (.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) = (.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
5148, 49, 50submmulg 18920 . . . . . . . . . 10 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ (♯‘𝑈) ∈ ℕ0 ∧ (𝑋𝐴) ∈ (ℂ ∖ {0})) → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
5245, 21, 47, 51syl3anc 1371 . . . . . . . . 9 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
53 eqid 2736 . . . . . . . . . . . 12 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
541, 2, 3, 7, 53, 49, 5dchrghm 26604 . . . . . . . . . . 11 (𝜑 → (𝑋𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
5521nn0zd 12525 . . . . . . . . . . 11 (𝜑 → (♯‘𝑈) ∈ ℤ)
567, 53unitgrpbas 20095 . . . . . . . . . . . 12 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
57 eqid 2736 . . . . . . . . . . . 12 (.g‘((mulGrp‘𝑍) ↾s 𝑈)) = (.g‘((mulGrp‘𝑍) ↾s 𝑈))
5856, 57, 50ghmmulg 19020 . . . . . . . . . . 11 (((𝑋𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (♯‘𝑈) ∈ ℤ ∧ 𝐴𝑈) → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)))
5954, 55, 9, 58syl3anc 1371 . . . . . . . . . 10 (𝜑 → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)))
605, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
6160nnnn0d 12473 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
622zncrng 20951 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
63 crngring 19976 . . . . . . . . . . . . . . . 16 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
6461, 62, 633syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ Ring)
657, 53unitgrp 20096 . . . . . . . . . . . . . . 15 (𝑍 ∈ Ring → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
6664, 65syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
67 eqid 2736 . . . . . . . . . . . . . . 15 (od‘((mulGrp‘𝑍) ↾s 𝑈)) = (od‘((mulGrp‘𝑍) ↾s 𝑈))
6856, 67oddvds2 19348 . . . . . . . . . . . . . 14 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝑈 ∈ Fin ∧ 𝐴𝑈) → ((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈))
6966, 19, 9, 68syl3anc 1371 . . . . . . . . . . . . 13 (𝜑 → ((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈))
70 eqid 2736 . . . . . . . . . . . . . . 15 (0g‘((mulGrp‘𝑍) ↾s 𝑈)) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))
7156, 67, 57, 70oddvds 19329 . . . . . . . . . . . . . 14 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝐴𝑈 ∧ (♯‘𝑈) ∈ ℤ) → (((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈) ↔ ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))))
7266, 9, 55, 71syl3anc 1371 . . . . . . . . . . . . 13 (𝜑 → (((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈) ↔ ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))))
7369, 72mpbid 231 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
74 eqid 2736 . . . . . . . . . . . . . 14 (1r𝑍) = (1r𝑍)
757, 53, 74unitgrpid 20098 . . . . . . . . . . . . 13 (𝑍 ∈ Ring → (1r𝑍) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
7664, 75syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝑍) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
7773, 76eqtr4d 2779 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (1r𝑍))
7877fveq2d 6846 . . . . . . . . . 10 (𝜑 → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((𝑋𝑈)‘(1r𝑍)))
799fvresd 6862 . . . . . . . . . . 11 (𝜑 → ((𝑋𝑈)‘𝐴) = (𝑋𝐴))
8079oveq2d 7373 . . . . . . . . . 10 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
8159, 78, 803eqtr3d 2784 . . . . . . . . 9 (𝜑 → ((𝑋𝑈)‘(1r𝑍)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
827, 741unit 20087 . . . . . . . . . 10 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
83 fvres 6861 . . . . . . . . . 10 ((1r𝑍) ∈ 𝑈 → ((𝑋𝑈)‘(1r𝑍)) = (𝑋‘(1r𝑍)))
8464, 82, 833syl 18 . . . . . . . . 9 (𝜑 → ((𝑋𝑈)‘(1r𝑍)) = (𝑋‘(1r𝑍)))
8552, 81, 843eqtr2d 2782 . . . . . . . 8 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = (𝑋‘(1r𝑍)))
86 cnfldexp 20830 . . . . . . . . 9 (((𝑋𝐴) ∈ ℂ ∧ (♯‘𝑈) ∈ ℕ0) → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((𝑋𝐴)↑(♯‘𝑈)))
8711, 21, 86syl2anc 584 . . . . . . . 8 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((𝑋𝐴)↑(♯‘𝑈)))
881, 2, 3dchrmhm 26589 . . . . . . . . . 10 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
8988, 5sselid 3942 . . . . . . . . 9 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
90 eqid 2736 . . . . . . . . . . 11 (mulGrp‘𝑍) = (mulGrp‘𝑍)
9190, 74ringidval 19915 . . . . . . . . . 10 (1r𝑍) = (0g‘(mulGrp‘𝑍))
92 cnfld1 20822 . . . . . . . . . . 11 1 = (1r‘ℂfld)
9343, 92ringidval 19915 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
9491, 93mhm0 18610 . . . . . . . . 9 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
9589, 94syl 17 . . . . . . . 8 (𝜑 → (𝑋‘(1r𝑍)) = 1)
9685, 87, 953eqtr3d 2784 . . . . . . 7 (𝜑 → ((𝑋𝐴)↑(♯‘𝑈)) = 1)
9796fveq2d 6846 . . . . . 6 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = (abs‘1))
98 abs1 15182 . . . . . 6 (abs‘1) = 1
9997, 98eqtrdi 2792 . . . . 5 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = 1)
10036, 37, 993eqtr2d 2782 . . . 4 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = 1)
101100oveq1d 7372 . . 3 (𝜑 → (((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈))↑𝑐(1 / (♯‘𝑈))) = (1↑𝑐(1 / (♯‘𝑈))))
10230, 32, 1013eqtr3d 2784 . 2 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐1) = (1↑𝑐(1 / (♯‘𝑈))))
10334cxp1d 26061 . 2 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐1) = (abs‘(𝑋𝐴)))
104291cxpd 26062 . 2 (𝜑 → (1↑𝑐(1 / (♯‘𝑈))) = 1)
105102, 103, 1043eqtr3d 2784 1 (𝜑 → (abs‘(𝑋𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wne 2943  cdif 3907  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  cres 5635  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  0cc0 11051  1c1 11052   · cmul 11056   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  cexp 13967  chash 14230  abscabs 15119  cdvds 16136  Basecbs 17083  s cress 17112  0gc0g 17321   MndHom cmhm 18599  SubMndcsubmnd 18600  Grpcgrp 18748  .gcmg 18872   GrpHom cghm 19005  odcod 19306  mulGrpcmgp 19896  1rcur 19913  Ringcrg 19964  CRingccrg 19965  Unitcui 20068  fldccnfld 20796  ℤ/nczn 20903  𝑐ccxp 25911  DChrcdchr 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-qus 17391  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-od 19310  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-dchr 26581
This theorem is referenced by:  dchrinv  26609  dchrabs2  26610  sum2dchr  26622  dchrisum0flblem1  26856
  Copyright terms: Public domain W3C validator