MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabs Structured version   Visualization version   GIF version

Theorem dchrabs 25822
Description: A Dirichlet character takes values on the unit circle. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g 𝐺 = (DChr‘𝑁)
dchrabs.d 𝐷 = (Base‘𝐺)
dchrabs.x (𝜑𝑋𝐷)
dchrabs.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrabs.u 𝑈 = (Unit‘𝑍)
dchrabs.a (𝜑𝐴𝑈)
Assertion
Ref Expression
dchrabs (𝜑 → (abs‘(𝑋𝐴)) = 1)

Proof of Theorem dchrabs
StepHypRef Expression
1 dchrabs.g . . . . . . 7 𝐺 = (DChr‘𝑁)
2 dchrabs.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrabs.d . . . . . . 7 𝐷 = (Base‘𝐺)
4 eqid 2821 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
5 dchrabs.x . . . . . . 7 (𝜑𝑋𝐷)
61, 2, 3, 4, 5dchrf 25804 . . . . . 6 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
7 dchrabs.u . . . . . . . 8 𝑈 = (Unit‘𝑍)
84, 7unitss 19393 . . . . . . 7 𝑈 ⊆ (Base‘𝑍)
9 dchrabs.a . . . . . . 7 (𝜑𝐴𝑈)
108, 9sseldi 3953 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝑍))
116, 10ffvelrnd 6838 . . . . 5 (𝜑 → (𝑋𝐴) ∈ ℂ)
121, 2, 3, 4, 7, 5, 10dchrn0 25812 . . . . . 6 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))
139, 12mpbird 259 . . . . 5 (𝜑 → (𝑋𝐴) ≠ 0)
1411, 13absrpcld 14793 . . . 4 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℝ+)
151, 3dchrrcl 25802 . . . . . . . 8 (𝑋𝐷𝑁 ∈ ℕ)
162, 4znfi 20689 . . . . . . . 8 (𝑁 ∈ ℕ → (Base‘𝑍) ∈ Fin)
175, 15, 163syl 18 . . . . . . 7 (𝜑 → (Base‘𝑍) ∈ Fin)
18 ssfi 8724 . . . . . . 7 (((Base‘𝑍) ∈ Fin ∧ 𝑈 ⊆ (Base‘𝑍)) → 𝑈 ∈ Fin)
1917, 8, 18sylancl 588 . . . . . 6 (𝜑𝑈 ∈ Fin)
20 hashcl 13707 . . . . . 6 (𝑈 ∈ Fin → (♯‘𝑈) ∈ ℕ0)
2119, 20syl 17 . . . . 5 (𝜑 → (♯‘𝑈) ∈ ℕ0)
2221nn0red 11943 . . . 4 (𝜑 → (♯‘𝑈) ∈ ℝ)
2322recnd 10655 . . . . 5 (𝜑 → (♯‘𝑈) ∈ ℂ)
249ne0d 4287 . . . . . . 7 (𝜑𝑈 ≠ ∅)
25 hashnncl 13717 . . . . . . . 8 (𝑈 ∈ Fin → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
2619, 25syl 17 . . . . . . 7 (𝜑 → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
2724, 26mpbird 259 . . . . . 6 (𝜑 → (♯‘𝑈) ∈ ℕ)
2827nnne0d 11674 . . . . 5 (𝜑 → (♯‘𝑈) ≠ 0)
2923, 28reccld 11395 . . . 4 (𝜑 → (1 / (♯‘𝑈)) ∈ ℂ)
3014, 22, 29cxpmuld 25305 . . 3 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐((♯‘𝑈) · (1 / (♯‘𝑈)))) = (((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈))↑𝑐(1 / (♯‘𝑈))))
3123, 28recidd 11397 . . . 4 (𝜑 → ((♯‘𝑈) · (1 / (♯‘𝑈))) = 1)
3231oveq2d 7158 . . 3 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐((♯‘𝑈) · (1 / (♯‘𝑈)))) = ((abs‘(𝑋𝐴))↑𝑐1))
3311abscld 14781 . . . . . . 7 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℝ)
3433recnd 10655 . . . . . 6 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℂ)
35 cxpexp 25237 . . . . . 6 (((abs‘(𝑋𝐴)) ∈ ℂ ∧ (♯‘𝑈) ∈ ℕ0) → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
3634, 21, 35syl2anc 586 . . . . 5 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
3711, 21absexpd 14797 . . . . 5 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
38 cnring 20550 . . . . . . . . . . 11 fld ∈ Ring
39 cnfldbas 20532 . . . . . . . . . . . . 13 ℂ = (Base‘ℂfld)
40 cnfld0 20552 . . . . . . . . . . . . 13 0 = (0g‘ℂfld)
41 cndrng 20557 . . . . . . . . . . . . 13 fld ∈ DivRing
4239, 40, 41drngui 19491 . . . . . . . . . . . 12 (ℂ ∖ {0}) = (Unit‘ℂfld)
43 eqid 2821 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
4442, 43unitsubm 19403 . . . . . . . . . . 11 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
4538, 44mp1i 13 . . . . . . . . . 10 (𝜑 → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
46 eldifsn 4705 . . . . . . . . . . 11 ((𝑋𝐴) ∈ (ℂ ∖ {0}) ↔ ((𝑋𝐴) ∈ ℂ ∧ (𝑋𝐴) ≠ 0))
4711, 13, 46sylanbrc 585 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ∈ (ℂ ∖ {0}))
48 eqid 2821 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
49 eqid 2821 . . . . . . . . . . 11 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
50 eqid 2821 . . . . . . . . . . 11 (.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) = (.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
5148, 49, 50submmulg 18254 . . . . . . . . . 10 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ (♯‘𝑈) ∈ ℕ0 ∧ (𝑋𝐴) ∈ (ℂ ∖ {0})) → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
5245, 21, 47, 51syl3anc 1367 . . . . . . . . 9 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
53 eqid 2821 . . . . . . . . . . . 12 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
541, 2, 3, 7, 53, 49, 5dchrghm 25818 . . . . . . . . . . 11 (𝜑 → (𝑋𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
5521nn0zd 12072 . . . . . . . . . . 11 (𝜑 → (♯‘𝑈) ∈ ℤ)
567, 53unitgrpbas 19399 . . . . . . . . . . . 12 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
57 eqid 2821 . . . . . . . . . . . 12 (.g‘((mulGrp‘𝑍) ↾s 𝑈)) = (.g‘((mulGrp‘𝑍) ↾s 𝑈))
5856, 57, 50ghmmulg 18353 . . . . . . . . . . 11 (((𝑋𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (♯‘𝑈) ∈ ℤ ∧ 𝐴𝑈) → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)))
5954, 55, 9, 58syl3anc 1367 . . . . . . . . . 10 (𝜑 → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)))
605, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
6160nnnn0d 11942 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
622zncrng 20674 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
63 crngring 19291 . . . . . . . . . . . . . . . 16 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
6461, 62, 633syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ Ring)
657, 53unitgrp 19400 . . . . . . . . . . . . . . 15 (𝑍 ∈ Ring → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
6664, 65syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
67 eqid 2821 . . . . . . . . . . . . . . 15 (od‘((mulGrp‘𝑍) ↾s 𝑈)) = (od‘((mulGrp‘𝑍) ↾s 𝑈))
6856, 67oddvds2 18676 . . . . . . . . . . . . . 14 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝑈 ∈ Fin ∧ 𝐴𝑈) → ((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈))
6966, 19, 9, 68syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → ((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈))
70 eqid 2821 . . . . . . . . . . . . . . 15 (0g‘((mulGrp‘𝑍) ↾s 𝑈)) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))
7156, 67, 57, 70oddvds 18658 . . . . . . . . . . . . . 14 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝐴𝑈 ∧ (♯‘𝑈) ∈ ℤ) → (((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈) ↔ ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))))
7266, 9, 55, 71syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → (((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈) ↔ ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))))
7369, 72mpbid 234 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
74 eqid 2821 . . . . . . . . . . . . . 14 (1r𝑍) = (1r𝑍)
757, 53, 74unitgrpid 19402 . . . . . . . . . . . . 13 (𝑍 ∈ Ring → (1r𝑍) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
7664, 75syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝑍) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
7773, 76eqtr4d 2859 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (1r𝑍))
7877fveq2d 6660 . . . . . . . . . 10 (𝜑 → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((𝑋𝑈)‘(1r𝑍)))
799fvresd 6676 . . . . . . . . . . 11 (𝜑 → ((𝑋𝑈)‘𝐴) = (𝑋𝐴))
8079oveq2d 7158 . . . . . . . . . 10 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
8159, 78, 803eqtr3d 2864 . . . . . . . . 9 (𝜑 → ((𝑋𝑈)‘(1r𝑍)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
827, 741unit 19391 . . . . . . . . . 10 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
83 fvres 6675 . . . . . . . . . 10 ((1r𝑍) ∈ 𝑈 → ((𝑋𝑈)‘(1r𝑍)) = (𝑋‘(1r𝑍)))
8464, 82, 833syl 18 . . . . . . . . 9 (𝜑 → ((𝑋𝑈)‘(1r𝑍)) = (𝑋‘(1r𝑍)))
8552, 81, 843eqtr2d 2862 . . . . . . . 8 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = (𝑋‘(1r𝑍)))
86 cnfldexp 20561 . . . . . . . . 9 (((𝑋𝐴) ∈ ℂ ∧ (♯‘𝑈) ∈ ℕ0) → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((𝑋𝐴)↑(♯‘𝑈)))
8711, 21, 86syl2anc 586 . . . . . . . 8 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((𝑋𝐴)↑(♯‘𝑈)))
881, 2, 3dchrmhm 25803 . . . . . . . . . 10 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
8988, 5sseldi 3953 . . . . . . . . 9 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
90 eqid 2821 . . . . . . . . . . 11 (mulGrp‘𝑍) = (mulGrp‘𝑍)
9190, 74ringidval 19236 . . . . . . . . . 10 (1r𝑍) = (0g‘(mulGrp‘𝑍))
92 cnfld1 20553 . . . . . . . . . . 11 1 = (1r‘ℂfld)
9343, 92ringidval 19236 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
9491, 93mhm0 17947 . . . . . . . . 9 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
9589, 94syl 17 . . . . . . . 8 (𝜑 → (𝑋‘(1r𝑍)) = 1)
9685, 87, 953eqtr3d 2864 . . . . . . 7 (𝜑 → ((𝑋𝐴)↑(♯‘𝑈)) = 1)
9796fveq2d 6660 . . . . . 6 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = (abs‘1))
98 abs1 14642 . . . . . 6 (abs‘1) = 1
9997, 98syl6eq 2872 . . . . 5 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = 1)
10036, 37, 993eqtr2d 2862 . . . 4 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = 1)
101100oveq1d 7157 . . 3 (𝜑 → (((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈))↑𝑐(1 / (♯‘𝑈))) = (1↑𝑐(1 / (♯‘𝑈))))
10230, 32, 1013eqtr3d 2864 . 2 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐1) = (1↑𝑐(1 / (♯‘𝑈))))
10334cxp1d 25275 . 2 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐1) = (abs‘(𝑋𝐴)))
104291cxpd 25276 . 2 (𝜑 → (1↑𝑐(1 / (♯‘𝑈))) = 1)
105102, 103, 1043eqtr3d 2864 1 (𝜑 → (abs‘(𝑋𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wne 3016  cdif 3921  wss 3924  c0 4279  {csn 4553   class class class wbr 5052  cres 5543  cfv 6341  (class class class)co 7142  Fincfn 8495  cc 10521  0cc0 10523  1c1 10524   · cmul 10528   / cdiv 11283  cn 11624  0cn0 11884  cz 11968  cexp 13419  chash 13680  abscabs 14578  cdvds 15592  Basecbs 16466  s cress 16467  0gc0g 16696   MndHom cmhm 17937  SubMndcsubmnd 17938  Grpcgrp 18086  .gcmg 18207   GrpHom cghm 18338  odcod 18635  mulGrpcmgp 19222  1rcur 19234  Ringcrg 19280  CRingccrg 19281  Unitcui 19372  fldccnfld 20528  ℤ/nczn 20633  𝑐ccxp 25125  DChrcdchr 25794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601  ax-addf 10602  ax-mulf 10603
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-om 7567  df-1st 7675  df-2nd 7676  df-supp 7817  df-tpos 7878  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-omul 8093  df-er 8275  df-ec 8277  df-qs 8281  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-acn 9357  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-z 11969  df-dec 12086  df-uz 12231  df-q 12336  df-rp 12377  df-xneg 12494  df-xadd 12495  df-xmul 12496  df-ioo 12729  df-ioc 12730  df-ico 12731  df-icc 12732  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14411  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-limsup 14813  df-clim 14830  df-rlim 14831  df-sum 15028  df-ef 15406  df-sin 15408  df-cos 15409  df-pi 15411  df-dvds 15593  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-starv 16563  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ds 16570  df-unif 16571  df-hom 16572  df-cco 16573  df-rest 16679  df-topn 16680  df-0g 16698  df-gsum 16699  df-topgen 16700  df-pt 16701  df-prds 16704  df-xrs 16758  df-qtop 16763  df-imas 16764  df-qus 16765  df-xps 16766  df-mre 16840  df-mrc 16841  df-acs 16843  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-mhm 17939  df-submnd 17940  df-grp 18089  df-minusg 18090  df-sbg 18091  df-mulg 18208  df-subg 18259  df-nsg 18260  df-eqg 18261  df-ghm 18339  df-cntz 18430  df-od 18639  df-cmn 18891  df-abl 18892  df-mgp 19223  df-ur 19235  df-ring 19282  df-cring 19283  df-oppr 19356  df-dvdsr 19374  df-unit 19375  df-invr 19405  df-dvr 19416  df-rnghom 19450  df-drng 19487  df-subrg 19516  df-lmod 19619  df-lss 19687  df-lsp 19727  df-sra 19927  df-rgmod 19928  df-lidl 19929  df-rsp 19930  df-2idl 19988  df-psmet 20520  df-xmet 20521  df-met 20522  df-bl 20523  df-mopn 20524  df-fbas 20525  df-fg 20526  df-cnfld 20529  df-zring 20601  df-zrh 20634  df-zn 20637  df-top 21485  df-topon 21502  df-topsp 21524  df-bases 21537  df-cld 21610  df-ntr 21611  df-cls 21612  df-nei 21689  df-lp 21727  df-perf 21728  df-cn 21818  df-cnp 21819  df-haus 21906  df-tx 22153  df-hmeo 22346  df-fil 22437  df-fm 22529  df-flim 22530  df-flf 22531  df-xms 22913  df-ms 22914  df-tms 22915  df-cncf 23469  df-limc 24449  df-dv 24450  df-log 25126  df-cxp 25127  df-dchr 25795
This theorem is referenced by:  dchrinv  25823  dchrabs2  25824  sum2dchr  25836  dchrisum0flblem1  26070
  Copyright terms: Public domain W3C validator