MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabs Structured version   Visualization version   GIF version

Theorem dchrabs 25221
Description: A Dirichlet character takes values on the unit circle. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g 𝐺 = (DChr‘𝑁)
dchrabs.d 𝐷 = (Base‘𝐺)
dchrabs.x (𝜑𝑋𝐷)
dchrabs.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrabs.u 𝑈 = (Unit‘𝑍)
dchrabs.a (𝜑𝐴𝑈)
Assertion
Ref Expression
dchrabs (𝜑 → (abs‘(𝑋𝐴)) = 1)

Proof of Theorem dchrabs
StepHypRef Expression
1 dchrabs.g . . . . . . 7 𝐺 = (DChr‘𝑁)
2 dchrabs.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrabs.d . . . . . . 7 𝐷 = (Base‘𝐺)
4 eqid 2817 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
5 dchrabs.x . . . . . . 7 (𝜑𝑋𝐷)
61, 2, 3, 4, 5dchrf 25203 . . . . . 6 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
7 dchrabs.u . . . . . . . 8 𝑈 = (Unit‘𝑍)
84, 7unitss 18881 . . . . . . 7 𝑈 ⊆ (Base‘𝑍)
9 dchrabs.a . . . . . . 7 (𝜑𝐴𝑈)
108, 9sseldi 3807 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝑍))
116, 10ffvelrnd 6591 . . . . 5 (𝜑 → (𝑋𝐴) ∈ ℂ)
121, 2, 3, 4, 7, 5, 10dchrn0 25211 . . . . . 6 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))
139, 12mpbird 248 . . . . 5 (𝜑 → (𝑋𝐴) ≠ 0)
1411, 13absrpcld 14429 . . . 4 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℝ+)
151, 3dchrrcl 25201 . . . . . . . 8 (𝑋𝐷𝑁 ∈ ℕ)
162, 4znfi 20134 . . . . . . . 8 (𝑁 ∈ ℕ → (Base‘𝑍) ∈ Fin)
175, 15, 163syl 18 . . . . . . 7 (𝜑 → (Base‘𝑍) ∈ Fin)
18 ssfi 8428 . . . . . . 7 (((Base‘𝑍) ∈ Fin ∧ 𝑈 ⊆ (Base‘𝑍)) → 𝑈 ∈ Fin)
1917, 8, 18sylancl 576 . . . . . 6 (𝜑𝑈 ∈ Fin)
20 hashcl 13384 . . . . . 6 (𝑈 ∈ Fin → (♯‘𝑈) ∈ ℕ0)
2119, 20syl 17 . . . . 5 (𝜑 → (♯‘𝑈) ∈ ℕ0)
2221nn0red 11637 . . . 4 (𝜑 → (♯‘𝑈) ∈ ℝ)
2322recnd 10362 . . . . 5 (𝜑 → (♯‘𝑈) ∈ ℂ)
249ne0d 4134 . . . . . . 7 (𝜑𝑈 ≠ ∅)
25 hashnncl 13394 . . . . . . . 8 (𝑈 ∈ Fin → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
2619, 25syl 17 . . . . . . 7 (𝜑 → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
2724, 26mpbird 248 . . . . . 6 (𝜑 → (♯‘𝑈) ∈ ℕ)
2827nnne0d 11362 . . . . 5 (𝜑 → (♯‘𝑈) ≠ 0)
2923, 28reccld 11088 . . . 4 (𝜑 → (1 / (♯‘𝑈)) ∈ ℂ)
3014, 22, 29cxpmuld 24716 . . 3 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐((♯‘𝑈) · (1 / (♯‘𝑈)))) = (((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈))↑𝑐(1 / (♯‘𝑈))))
3123, 28recidd 11090 . . . 4 (𝜑 → ((♯‘𝑈) · (1 / (♯‘𝑈))) = 1)
3231oveq2d 6899 . . 3 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐((♯‘𝑈) · (1 / (♯‘𝑈)))) = ((abs‘(𝑋𝐴))↑𝑐1))
3311abscld 14417 . . . . . . 7 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℝ)
3433recnd 10362 . . . . . 6 (𝜑 → (abs‘(𝑋𝐴)) ∈ ℂ)
35 cxpexp 24650 . . . . . 6 (((abs‘(𝑋𝐴)) ∈ ℂ ∧ (♯‘𝑈) ∈ ℕ0) → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
3634, 21, 35syl2anc 575 . . . . 5 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
3711, 21absexpd 14433 . . . . 5 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = ((abs‘(𝑋𝐴))↑(♯‘𝑈)))
38 cnring 19995 . . . . . . . . . . 11 fld ∈ Ring
39 cnfldbas 19977 . . . . . . . . . . . . 13 ℂ = (Base‘ℂfld)
40 cnfld0 19997 . . . . . . . . . . . . 13 0 = (0g‘ℂfld)
41 cndrng 20002 . . . . . . . . . . . . 13 fld ∈ DivRing
4239, 40, 41drngui 18976 . . . . . . . . . . . 12 (ℂ ∖ {0}) = (Unit‘ℂfld)
43 eqid 2817 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
4442, 43unitsubm 18891 . . . . . . . . . . 11 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
4538, 44mp1i 13 . . . . . . . . . 10 (𝜑 → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
46 eldifsn 4519 . . . . . . . . . . 11 ((𝑋𝐴) ∈ (ℂ ∖ {0}) ↔ ((𝑋𝐴) ∈ ℂ ∧ (𝑋𝐴) ≠ 0))
4711, 13, 46sylanbrc 574 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ∈ (ℂ ∖ {0}))
48 eqid 2817 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
49 eqid 2817 . . . . . . . . . . 11 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
50 eqid 2817 . . . . . . . . . . 11 (.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) = (.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
5148, 49, 50submmulg 17807 . . . . . . . . . 10 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ (♯‘𝑈) ∈ ℕ0 ∧ (𝑋𝐴) ∈ (ℂ ∖ {0})) → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
5245, 21, 47, 51syl3anc 1483 . . . . . . . . 9 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
53 eqid 2817 . . . . . . . . . . . 12 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
541, 2, 3, 7, 53, 49, 5dchrghm 25217 . . . . . . . . . . 11 (𝜑 → (𝑋𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
5521nn0zd 11765 . . . . . . . . . . 11 (𝜑 → (♯‘𝑈) ∈ ℤ)
567, 53unitgrpbas 18887 . . . . . . . . . . . 12 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
57 eqid 2817 . . . . . . . . . . . 12 (.g‘((mulGrp‘𝑍) ↾s 𝑈)) = (.g‘((mulGrp‘𝑍) ↾s 𝑈))
5856, 57, 50ghmmulg 17893 . . . . . . . . . . 11 (((𝑋𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (♯‘𝑈) ∈ ℤ ∧ 𝐴𝑈) → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)))
5954, 55, 9, 58syl3anc 1483 . . . . . . . . . 10 (𝜑 → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)))
605, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
6160nnnn0d 11636 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
622zncrng 20119 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
63 crngring 18779 . . . . . . . . . . . . . . . 16 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
6461, 62, 633syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ Ring)
657, 53unitgrp 18888 . . . . . . . . . . . . . . 15 (𝑍 ∈ Ring → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
6664, 65syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
67 eqid 2817 . . . . . . . . . . . . . . 15 (od‘((mulGrp‘𝑍) ↾s 𝑈)) = (od‘((mulGrp‘𝑍) ↾s 𝑈))
6856, 67oddvds2 18203 . . . . . . . . . . . . . 14 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝑈 ∈ Fin ∧ 𝐴𝑈) → ((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈))
6966, 19, 9, 68syl3anc 1483 . . . . . . . . . . . . 13 (𝜑 → ((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈))
70 eqid 2817 . . . . . . . . . . . . . . 15 (0g‘((mulGrp‘𝑍) ↾s 𝑈)) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))
7156, 67, 57, 70oddvds 18186 . . . . . . . . . . . . . 14 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝐴𝑈 ∧ (♯‘𝑈) ∈ ℤ) → (((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈) ↔ ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))))
7266, 9, 55, 71syl3anc 1483 . . . . . . . . . . . . 13 (𝜑 → (((od‘((mulGrp‘𝑍) ↾s 𝑈))‘𝐴) ∥ (♯‘𝑈) ↔ ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈))))
7369, 72mpbid 223 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
74 eqid 2817 . . . . . . . . . . . . . 14 (1r𝑍) = (1r𝑍)
757, 53, 74unitgrpid 18890 . . . . . . . . . . . . 13 (𝑍 ∈ Ring → (1r𝑍) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
7664, 75syl 17 . . . . . . . . . . . 12 (𝜑 → (1r𝑍) = (0g‘((mulGrp‘𝑍) ↾s 𝑈)))
7773, 76eqtr4d 2854 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴) = (1r𝑍))
7877fveq2d 6421 . . . . . . . . . 10 (𝜑 → ((𝑋𝑈)‘((♯‘𝑈)(.g‘((mulGrp‘𝑍) ↾s 𝑈))𝐴)) = ((𝑋𝑈)‘(1r𝑍)))
79 fvres 6436 . . . . . . . . . . . 12 (𝐴𝑈 → ((𝑋𝑈)‘𝐴) = (𝑋𝐴))
809, 79syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑋𝑈)‘𝐴) = (𝑋𝐴))
8180oveq2d 6899 . . . . . . . . . 10 (𝜑 → ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))((𝑋𝑈)‘𝐴)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
8259, 78, 813eqtr3d 2859 . . . . . . . . 9 (𝜑 → ((𝑋𝑈)‘(1r𝑍)) = ((♯‘𝑈)(.g‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))(𝑋𝐴)))
837, 741unit 18879 . . . . . . . . . 10 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
84 fvres 6436 . . . . . . . . . 10 ((1r𝑍) ∈ 𝑈 → ((𝑋𝑈)‘(1r𝑍)) = (𝑋‘(1r𝑍)))
8564, 83, 843syl 18 . . . . . . . . 9 (𝜑 → ((𝑋𝑈)‘(1r𝑍)) = (𝑋‘(1r𝑍)))
8652, 82, 853eqtr2d 2857 . . . . . . . 8 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = (𝑋‘(1r𝑍)))
87 cnfldexp 20006 . . . . . . . . 9 (((𝑋𝐴) ∈ ℂ ∧ (♯‘𝑈) ∈ ℕ0) → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((𝑋𝐴)↑(♯‘𝑈)))
8811, 21, 87syl2anc 575 . . . . . . . 8 (𝜑 → ((♯‘𝑈)(.g‘(mulGrp‘ℂfld))(𝑋𝐴)) = ((𝑋𝐴)↑(♯‘𝑈)))
891, 2, 3dchrmhm 25202 . . . . . . . . . 10 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
9089, 5sseldi 3807 . . . . . . . . 9 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
91 eqid 2817 . . . . . . . . . . 11 (mulGrp‘𝑍) = (mulGrp‘𝑍)
9291, 74ringidval 18724 . . . . . . . . . 10 (1r𝑍) = (0g‘(mulGrp‘𝑍))
93 cnfld1 19998 . . . . . . . . . . 11 1 = (1r‘ℂfld)
9443, 93ringidval 18724 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
9592, 94mhm0 17567 . . . . . . . . 9 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
9690, 95syl 17 . . . . . . . 8 (𝜑 → (𝑋‘(1r𝑍)) = 1)
9786, 88, 963eqtr3d 2859 . . . . . . 7 (𝜑 → ((𝑋𝐴)↑(♯‘𝑈)) = 1)
9897fveq2d 6421 . . . . . 6 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = (abs‘1))
99 abs1 14279 . . . . . 6 (abs‘1) = 1
10098, 99syl6eq 2867 . . . . 5 (𝜑 → (abs‘((𝑋𝐴)↑(♯‘𝑈))) = 1)
10136, 37, 1003eqtr2d 2857 . . . 4 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈)) = 1)
102101oveq1d 6898 . . 3 (𝜑 → (((abs‘(𝑋𝐴))↑𝑐(♯‘𝑈))↑𝑐(1 / (♯‘𝑈))) = (1↑𝑐(1 / (♯‘𝑈))))
10330, 32, 1023eqtr3d 2859 . 2 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐1) = (1↑𝑐(1 / (♯‘𝑈))))
10434cxp1d 24688 . 2 (𝜑 → ((abs‘(𝑋𝐴))↑𝑐1) = (abs‘(𝑋𝐴)))
105291cxpd 24689 . 2 (𝜑 → (1↑𝑐(1 / (♯‘𝑈))) = 1)
106103, 104, 1053eqtr3d 2859 1 (𝜑 → (abs‘(𝑋𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197   = wceq 1637  wcel 2157  wne 2989  cdif 3777  wss 3780  c0 4127  {csn 4381   class class class wbr 4855  cres 5326  cfv 6110  (class class class)co 6883  Fincfn 8201  cc 10228  0cc0 10230  1c1 10231   · cmul 10235   / cdiv 10978  cn 11314  0cn0 11578  cz 11662  cexp 13102  chash 13356  abscabs 14216  cdvds 15222  Basecbs 16087  s cress 16088  0gc0g 16324   MndHom cmhm 17557  SubMndcsubmnd 17558  Grpcgrp 17646  .gcmg 17764   GrpHom cghm 17878  odcod 18164  mulGrpcmgp 18710  1rcur 18722  Ringcrg 18768  CRingccrg 18769  Unitcui 18860  fldccnfld 19973  ℤ/nczn 20078  𝑐ccxp 24538  DChrcdchr 25193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7188  ax-inf2 8794  ax-cnex 10286  ax-resscn 10287  ax-1cn 10288  ax-icn 10289  ax-addcl 10290  ax-addrcl 10291  ax-mulcl 10292  ax-mulrcl 10293  ax-mulcom 10294  ax-addass 10295  ax-mulass 10296  ax-distr 10297  ax-i2m1 10298  ax-1ne0 10299  ax-1rid 10300  ax-rnegex 10301  ax-rrecex 10302  ax-cnre 10303  ax-pre-lttri 10304  ax-pre-lttrn 10305  ax-pre-ltadd 10306  ax-pre-mulgt0 10307  ax-pre-sup 10308  ax-addf 10309  ax-mulf 10310
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-iin 4726  df-disj 4824  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-se 5284  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5906  df-ord 5952  df-on 5953  df-lim 5954  df-suc 5955  df-iota 6073  df-fun 6112  df-fn 6113  df-f 6114  df-f1 6115  df-fo 6116  df-f1o 6117  df-fv 6118  df-isom 6119  df-riota 6844  df-ov 6886  df-oprab 6887  df-mpt2 6888  df-of 7136  df-om 7305  df-1st 7407  df-2nd 7408  df-supp 7539  df-tpos 7596  df-wrecs 7651  df-recs 7713  df-rdg 7751  df-1o 7805  df-2o 7806  df-oadd 7809  df-omul 7810  df-er 7988  df-ec 7990  df-qs 7994  df-map 8103  df-pm 8104  df-ixp 8155  df-en 8202  df-dom 8203  df-sdom 8204  df-fin 8205  df-fsupp 8524  df-fi 8565  df-sup 8596  df-inf 8597  df-oi 8663  df-card 9057  df-acn 9060  df-cda 9284  df-pnf 10370  df-mnf 10371  df-xr 10372  df-ltxr 10373  df-le 10374  df-sub 10562  df-neg 10563  df-div 10979  df-nn 11315  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11579  df-z 11663  df-dec 11779  df-uz 11924  df-q 12027  df-rp 12066  df-xneg 12181  df-xadd 12182  df-xmul 12183  df-ioo 12416  df-ioc 12417  df-ico 12418  df-icc 12419  df-fz 12569  df-fzo 12709  df-fl 12836  df-mod 12912  df-seq 13044  df-exp 13103  df-fac 13300  df-bc 13329  df-hash 13357  df-shft 14049  df-cj 14081  df-re 14082  df-im 14083  df-sqrt 14217  df-abs 14218  df-limsup 14444  df-clim 14461  df-rlim 14462  df-sum 14659  df-ef 15037  df-sin 15039  df-cos 15040  df-pi 15042  df-dvds 15223  df-struct 16089  df-ndx 16090  df-slot 16091  df-base 16093  df-sets 16094  df-ress 16095  df-plusg 16185  df-mulr 16186  df-starv 16187  df-sca 16188  df-vsca 16189  df-ip 16190  df-tset 16191  df-ple 16192  df-ds 16194  df-unif 16195  df-hom 16196  df-cco 16197  df-rest 16307  df-topn 16308  df-0g 16326  df-gsum 16327  df-topgen 16328  df-pt 16329  df-prds 16332  df-xrs 16386  df-qtop 16391  df-imas 16392  df-qus 16393  df-xps 16394  df-mre 16470  df-mrc 16471  df-acs 16473  df-mgm 17466  df-sgrp 17508  df-mnd 17519  df-mhm 17559  df-submnd 17560  df-grp 17649  df-minusg 17650  df-sbg 17651  df-mulg 17765  df-subg 17812  df-nsg 17813  df-eqg 17814  df-ghm 17879  df-cntz 17970  df-od 18168  df-cmn 18415  df-abl 18416  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-oppr 18844  df-dvdsr 18862  df-unit 18863  df-invr 18893  df-dvr 18904  df-rnghom 18938  df-drng 18972  df-subrg 19001  df-lmod 19088  df-lss 19156  df-lsp 19198  df-sra 19400  df-rgmod 19401  df-lidl 19402  df-rsp 19403  df-2idl 19460  df-psmet 19965  df-xmet 19966  df-met 19967  df-bl 19968  df-mopn 19969  df-fbas 19970  df-fg 19971  df-cnfld 19974  df-zring 20046  df-zrh 20079  df-zn 20082  df-top 20932  df-topon 20949  df-topsp 20971  df-bases 20984  df-cld 21057  df-ntr 21058  df-cls 21059  df-nei 21136  df-lp 21174  df-perf 21175  df-cn 21265  df-cnp 21266  df-haus 21353  df-tx 21599  df-hmeo 21792  df-fil 21883  df-fm 21975  df-flim 21976  df-flf 21977  df-xms 22358  df-ms 22359  df-tms 22360  df-cncf 22914  df-limc 23866  df-dv 23867  df-log 24539  df-cxp 24540  df-dchr 25194
This theorem is referenced by:  dchrinv  25222  dchrabs2  25223  sum2dchr  25235  dchrisum0flblem1  25433
  Copyright terms: Public domain W3C validator