Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zrhpsgnmhm | Structured version Visualization version GIF version |
Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
zrhpsgnmhm | ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
2 | 1 | zrhrhm 20723 | . . 3 ⊢ (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) |
3 | eqid 2738 | . . . 4 ⊢ (mulGrp‘ℤring) = (mulGrp‘ℤring) | |
4 | eqid 2738 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
5 | 3, 4 | rhmmhm 19976 | . . 3 ⊢ ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅))) |
6 | 2, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅))) |
7 | eqid 2738 | . . . . 5 ⊢ (SymGrp‘𝐴) = (SymGrp‘𝐴) | |
8 | eqid 2738 | . . . . 5 ⊢ (pmSgn‘𝐴) = (pmSgn‘𝐴) | |
9 | eqid 2738 | . . . . 5 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
10 | 7, 8, 9 | psgnghm2 20796 | . . . 4 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
11 | ghmmhm 18854 | . . . 4 ⊢ ((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1}))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
13 | eqid 2738 | . . . . . . . 8 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
14 | 13 | cnmsgnsubg 20792 | . . . . . . 7 ⊢ {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
15 | subgsubm 18787 | . . . . . . 7 ⊢ ({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
17 | cnring 20630 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
18 | cnfldbas 20611 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
19 | cnfld0 20632 | . . . . . . . . 9 ⊢ 0 = (0g‘ℂfld) | |
20 | cndrng 20637 | . . . . . . . . 9 ⊢ ℂfld ∈ DivRing | |
21 | 18, 19, 20 | drngui 20007 | . . . . . . . 8 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
22 | eqid 2738 | . . . . . . . 8 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
23 | 21, 22 | unitsubm 19922 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) |
24 | 13 | subsubm 18465 | . . . . . . 7 ⊢ ((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0})))) |
25 | 17, 23, 24 | mp2b 10 | . . . . . 6 ⊢ ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0}))) |
26 | 16, 25 | mpbi 229 | . . . . 5 ⊢ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0})) |
27 | 26 | simpli 484 | . . . 4 ⊢ {1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) |
28 | 1z 12360 | . . . . 5 ⊢ 1 ∈ ℤ | |
29 | neg1z 12366 | . . . . 5 ⊢ -1 ∈ ℤ | |
30 | prssi 4754 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ) | |
31 | 28, 29, 30 | mp2an 689 | . . . 4 ⊢ {1, -1} ⊆ ℤ |
32 | zsubrg 20661 | . . . . 5 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
33 | 22 | subrgsubm 20047 | . . . . 5 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld))) |
34 | zringmpg 20703 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | |
35 | 34 | eqcomi 2747 | . . . . . 6 ⊢ (mulGrp‘ℤring) = ((mulGrp‘ℂfld) ↾s ℤ) |
36 | 35 | subsubm 18465 | . . . . 5 ⊢ (ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ))) |
37 | 32, 33, 36 | mp2b 10 | . . . 4 ⊢ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ)) |
38 | 27, 31, 37 | mpbir2an 708 | . . 3 ⊢ {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) |
39 | zex 12338 | . . . . . 6 ⊢ ℤ ∈ V | |
40 | ressabs 16969 | . . . . . 6 ⊢ ((ℤ ∈ V ∧ {1, -1} ⊆ ℤ) → (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})) | |
41 | 39, 31, 40 | mp2an 689 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) |
42 | 34 | oveq1i 7277 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1}) |
43 | 41, 42 | eqtr3i 2768 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1}) |
44 | 43 | resmhm2 18470 | . . 3 ⊢ (((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring))) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) |
45 | 12, 38, 44 | sylancl 586 | . 2 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) |
46 | mhmco 18472 | . 2 ⊢ (((ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅)) ∧ (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) | |
47 | 6, 45, 46 | syl2an 596 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3429 ∖ cdif 3883 ⊆ wss 3886 {csn 4561 {cpr 4563 ∘ ccom 5588 ‘cfv 6426 (class class class)co 7267 Fincfn 8720 ℂcc 10879 0cc0 10881 1c1 10882 -cneg 11216 ℤcz 12329 ↾s cress 16951 MndHom cmhm 18438 SubMndcsubmnd 18439 SubGrpcsubg 18759 GrpHom cghm 18841 SymGrpcsymg 18984 pmSgncpsgn 19107 mulGrpcmgp 19730 Ringcrg 19793 RingHom crh 19966 SubRingcsubrg 20030 ℂfldccnfld 20607 ℤringczring 20680 ℤRHomczrh 20711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-addf 10960 ax-mulf 10961 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1507 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-tpos 8029 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-2o 8285 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-xnn0 12316 df-z 12330 df-dec 12448 df-uz 12593 df-rp 12741 df-fz 13250 df-fzo 13393 df-seq 13732 df-exp 13793 df-hash 14055 df-word 14228 df-lsw 14276 df-concat 14284 df-s1 14311 df-substr 14364 df-pfx 14394 df-splice 14473 df-reverse 14482 df-s2 14571 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-starv 16987 df-tset 16991 df-ple 16992 df-ds 16994 df-unif 16995 df-0g 17162 df-gsum 17163 df-mre 17305 df-mrc 17306 df-acs 17308 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mhm 18440 df-submnd 18441 df-efmnd 18518 df-grp 18590 df-minusg 18591 df-mulg 18711 df-subg 18762 df-ghm 18842 df-gim 18885 df-oppg 18960 df-symg 18985 df-pmtr 19060 df-psgn 19109 df-cmn 19398 df-abl 19399 df-mgp 19731 df-ur 19748 df-ring 19795 df-cring 19796 df-oppr 19872 df-dvdsr 19893 df-unit 19894 df-invr 19924 df-dvr 19935 df-rnghom 19969 df-drng 20003 df-subrg 20032 df-cnfld 20608 df-zring 20681 df-zrh 20715 |
This theorem is referenced by: madetsumid 21620 mdetleib2 21747 mdetf 21754 mdetdiaglem 21757 mdetrlin 21761 mdetrsca 21762 mdetralt 21767 mdetunilem7 21777 mdetunilem8 21778 |
Copyright terms: Public domain | W3C validator |