| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrhpsgnmhm | Structured version Visualization version GIF version | ||
| Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| zrhpsgnmhm | ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
| 2 | 1 | zrhrhm 21448 | . . 3 ⊢ (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) |
| 3 | eqid 2731 | . . . 4 ⊢ (mulGrp‘ℤring) = (mulGrp‘ℤring) | |
| 4 | eqid 2731 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | 3, 4 | rhmmhm 20397 | . . 3 ⊢ ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅))) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅))) |
| 7 | eqid 2731 | . . . . 5 ⊢ (SymGrp‘𝐴) = (SymGrp‘𝐴) | |
| 8 | eqid 2731 | . . . . 5 ⊢ (pmSgn‘𝐴) = (pmSgn‘𝐴) | |
| 9 | eqid 2731 | . . . . 5 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 10 | 7, 8, 9 | psgnghm2 21518 | . . . 4 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 11 | ghmmhm 19138 | . . . 4 ⊢ ((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1}))) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 13 | eqid 2731 | . . . . . . . 8 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 14 | 13 | cnmsgnsubg 21514 | . . . . . . 7 ⊢ {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
| 15 | subgsubm 19061 | . . . . . . 7 ⊢ ({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
| 17 | cnring 21327 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
| 18 | cnfldbas 21295 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
| 19 | cnfld0 21329 | . . . . . . . . 9 ⊢ 0 = (0g‘ℂfld) | |
| 20 | cndrng 21335 | . . . . . . . . 9 ⊢ ℂfld ∈ DivRing | |
| 21 | 18, 19, 20 | drngui 20650 | . . . . . . . 8 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
| 22 | eqid 2731 | . . . . . . . 8 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 23 | 21, 22 | unitsubm 20304 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) |
| 24 | 13 | subsubm 18724 | . . . . . . 7 ⊢ ((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0})))) |
| 25 | 17, 23, 24 | mp2b 10 | . . . . . 6 ⊢ ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0}))) |
| 26 | 16, 25 | mpbi 230 | . . . . 5 ⊢ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0})) |
| 27 | 26 | simpli 483 | . . . 4 ⊢ {1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) |
| 28 | 1z 12502 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 29 | neg1z 12508 | . . . . 5 ⊢ -1 ∈ ℤ | |
| 30 | prssi 4770 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ) | |
| 31 | 28, 29, 30 | mp2an 692 | . . . 4 ⊢ {1, -1} ⊆ ℤ |
| 32 | zsubrg 21357 | . . . . 5 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 33 | 22 | subrgsubm 20500 | . . . . 5 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld))) |
| 34 | zringmpg 21408 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | |
| 35 | 34 | eqcomi 2740 | . . . . . 6 ⊢ (mulGrp‘ℤring) = ((mulGrp‘ℂfld) ↾s ℤ) |
| 36 | 35 | subsubm 18724 | . . . . 5 ⊢ (ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ))) |
| 37 | 32, 33, 36 | mp2b 10 | . . . 4 ⊢ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ)) |
| 38 | 27, 31, 37 | mpbir2an 711 | . . 3 ⊢ {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) |
| 39 | zex 12477 | . . . . . 6 ⊢ ℤ ∈ V | |
| 40 | ressabs 17159 | . . . . . 6 ⊢ ((ℤ ∈ V ∧ {1, -1} ⊆ ℤ) → (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})) | |
| 41 | 39, 31, 40 | mp2an 692 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) |
| 42 | 34 | oveq1i 7356 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1}) |
| 43 | 41, 42 | eqtr3i 2756 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1}) |
| 44 | 43 | resmhm2 18729 | . . 3 ⊢ (((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring))) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) |
| 45 | 12, 38, 44 | sylancl 586 | . 2 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) |
| 46 | mhmco 18731 | . 2 ⊢ (((ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅)) ∧ (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) | |
| 47 | 6, 45, 46 | syl2an 596 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 {cpr 4575 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 ℂcc 11004 0cc0 11006 1c1 11007 -cneg 11345 ℤcz 12468 ↾s cress 17141 MndHom cmhm 18689 SubMndcsubmnd 18690 SubGrpcsubg 19033 GrpHom cghm 19124 SymGrpcsymg 19281 pmSgncpsgn 19401 mulGrpcmgp 20058 Ringcrg 20151 RingHom crh 20387 SubRingcsubrg 20484 ℂfldccnfld 21291 ℤringczring 21383 ℤRHomczrh 21436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-mulg 18981 df-subg 19036 df-ghm 19125 df-gim 19171 df-oppg 19258 df-symg 19282 df-pmtr 19354 df-psgn 19403 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-drng 20646 df-cnfld 21292 df-zring 21384 df-zrh 21440 |
| This theorem is referenced by: madetsumid 22376 mdetleib2 22503 mdetf 22510 mdetdiaglem 22513 mdetrlin 22517 mdetrsca 22518 mdetralt 22523 mdetunilem7 22533 mdetunilem8 22534 |
| Copyright terms: Public domain | W3C validator |