![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhpsgnmhm | Structured version Visualization version GIF version |
Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
zrhpsgnmhm | ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
2 | 1 | zrhrhm 20935 | . . 3 ⊢ (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) |
3 | eqid 2733 | . . . 4 ⊢ (mulGrp‘ℤring) = (mulGrp‘ℤring) | |
4 | eqid 2733 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
5 | 3, 4 | rhmmhm 20163 | . . 3 ⊢ ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅))) |
6 | 2, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅))) |
7 | eqid 2733 | . . . . 5 ⊢ (SymGrp‘𝐴) = (SymGrp‘𝐴) | |
8 | eqid 2733 | . . . . 5 ⊢ (pmSgn‘𝐴) = (pmSgn‘𝐴) | |
9 | eqid 2733 | . . . . 5 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
10 | 7, 8, 9 | psgnghm2 21008 | . . . 4 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
11 | ghmmhm 19026 | . . . 4 ⊢ ((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1}))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
13 | eqid 2733 | . . . . . . . 8 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
14 | 13 | cnmsgnsubg 21004 | . . . . . . 7 ⊢ {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
15 | subgsubm 18958 | . . . . . . 7 ⊢ ({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
17 | cnring 20842 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
18 | cnfldbas 20823 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
19 | cnfld0 20844 | . . . . . . . . 9 ⊢ 0 = (0g‘ℂfld) | |
20 | cndrng 20849 | . . . . . . . . 9 ⊢ ℂfld ∈ DivRing | |
21 | 18, 19, 20 | drngui 20225 | . . . . . . . 8 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
22 | eqid 2733 | . . . . . . . 8 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
23 | 21, 22 | unitsubm 20107 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) |
24 | 13 | subsubm 18635 | . . . . . . 7 ⊢ ((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0})))) |
25 | 17, 23, 24 | mp2b 10 | . . . . . 6 ⊢ ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0}))) |
26 | 16, 25 | mpbi 229 | . . . . 5 ⊢ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0})) |
27 | 26 | simpli 485 | . . . 4 ⊢ {1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) |
28 | 1z 12541 | . . . . 5 ⊢ 1 ∈ ℤ | |
29 | neg1z 12547 | . . . . 5 ⊢ -1 ∈ ℤ | |
30 | prssi 4785 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ) | |
31 | 28, 29, 30 | mp2an 691 | . . . 4 ⊢ {1, -1} ⊆ ℤ |
32 | zsubrg 20873 | . . . . 5 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
33 | 22 | subrgsubm 20277 | . . . . 5 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld))) |
34 | zringmpg 20915 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | |
35 | 34 | eqcomi 2742 | . . . . . 6 ⊢ (mulGrp‘ℤring) = ((mulGrp‘ℂfld) ↾s ℤ) |
36 | 35 | subsubm 18635 | . . . . 5 ⊢ (ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ))) |
37 | 32, 33, 36 | mp2b 10 | . . . 4 ⊢ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ)) |
38 | 27, 31, 37 | mpbir2an 710 | . . 3 ⊢ {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) |
39 | zex 12516 | . . . . . 6 ⊢ ℤ ∈ V | |
40 | ressabs 17138 | . . . . . 6 ⊢ ((ℤ ∈ V ∧ {1, -1} ⊆ ℤ) → (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})) | |
41 | 39, 31, 40 | mp2an 691 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) |
42 | 34 | oveq1i 7371 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1}) |
43 | 41, 42 | eqtr3i 2763 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1}) |
44 | 43 | resmhm2 18640 | . . 3 ⊢ (((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring))) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) |
45 | 12, 38, 44 | sylancl 587 | . 2 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) |
46 | mhmco 18642 | . 2 ⊢ (((ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅)) ∧ (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) | |
47 | 6, 45, 46 | syl2an 597 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 {csn 4590 {cpr 4592 ∘ ccom 5641 ‘cfv 6500 (class class class)co 7361 Fincfn 8889 ℂcc 11057 0cc0 11059 1c1 11060 -cneg 11394 ℤcz 12507 ↾s cress 17120 MndHom cmhm 18607 SubMndcsubmnd 18608 SubGrpcsubg 18930 GrpHom cghm 19013 SymGrpcsymg 19156 pmSgncpsgn 19279 mulGrpcmgp 19904 Ringcrg 19972 RingHom crh 20153 SubRingcsubrg 20260 ℂfldccnfld 20819 ℤringczring 20892 ℤRHomczrh 20923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-addf 11138 ax-mulf 11139 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-xor 1511 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-ot 4599 df-uni 4870 df-int 4912 df-iun 4960 df-iin 4961 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-tpos 8161 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-2o 8417 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-2 12224 df-3 12225 df-4 12226 df-5 12227 df-6 12228 df-7 12229 df-8 12230 df-9 12231 df-n0 12422 df-xnn0 12494 df-z 12508 df-dec 12627 df-uz 12772 df-rp 12924 df-fz 13434 df-fzo 13577 df-seq 13916 df-exp 13977 df-hash 14240 df-word 14412 df-lsw 14460 df-concat 14468 df-s1 14493 df-substr 14538 df-pfx 14568 df-splice 14647 df-reverse 14656 df-s2 14746 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-mulr 17155 df-starv 17156 df-tset 17160 df-ple 17161 df-ds 17163 df-unif 17164 df-0g 17331 df-gsum 17332 df-mre 17474 df-mrc 17475 df-acs 17477 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-mhm 18609 df-submnd 18610 df-efmnd 18687 df-grp 18759 df-minusg 18760 df-mulg 18881 df-subg 18933 df-ghm 19014 df-gim 19057 df-oppg 19132 df-symg 19157 df-pmtr 19232 df-psgn 19281 df-cmn 19572 df-abl 19573 df-mgp 19905 df-ur 19922 df-ring 19974 df-cring 19975 df-oppr 20057 df-dvdsr 20078 df-unit 20079 df-invr 20109 df-dvr 20120 df-rnghom 20156 df-drng 20221 df-subrg 20262 df-cnfld 20820 df-zring 20893 df-zrh 20927 |
This theorem is referenced by: madetsumid 21833 mdetleib2 21960 mdetf 21967 mdetdiaglem 21970 mdetrlin 21974 mdetrsca 21975 mdetralt 21980 mdetunilem7 21990 mdetunilem8 21991 |
Copyright terms: Public domain | W3C validator |