![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhpsgnmhm | Structured version Visualization version GIF version |
Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
zrhpsgnmhm | ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2775 | . . . 4 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
2 | 1 | zrhrhm 20355 | . . 3 ⊢ (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) |
3 | eqid 2775 | . . . 4 ⊢ (mulGrp‘ℤring) = (mulGrp‘ℤring) | |
4 | eqid 2775 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
5 | 3, 4 | rhmmhm 19191 | . . 3 ⊢ ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅))) |
6 | 2, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅))) |
7 | eqid 2775 | . . . . 5 ⊢ (SymGrp‘𝐴) = (SymGrp‘𝐴) | |
8 | eqid 2775 | . . . . 5 ⊢ (pmSgn‘𝐴) = (pmSgn‘𝐴) | |
9 | eqid 2775 | . . . . 5 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
10 | 7, 8, 9 | psgnghm2 20421 | . . . 4 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
11 | ghmmhm 18133 | . . . 4 ⊢ ((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1}))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
13 | eqid 2775 | . . . . . . . 8 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
14 | 13 | cnmsgnsubg 20417 | . . . . . . 7 ⊢ {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
15 | subgsubm 18079 | . . . . . . 7 ⊢ ({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
17 | cnring 20263 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
18 | cnfldbas 20245 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
19 | cnfld0 20265 | . . . . . . . . 9 ⊢ 0 = (0g‘ℂfld) | |
20 | cndrng 20270 | . . . . . . . . 9 ⊢ ℂfld ∈ DivRing | |
21 | 18, 19, 20 | drngui 19225 | . . . . . . . 8 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
22 | eqid 2775 | . . . . . . . 8 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
23 | 21, 22 | unitsubm 19137 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) |
24 | 13 | subsubm 17819 | . . . . . . 7 ⊢ ((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0})))) |
25 | 17, 23, 24 | mp2b 10 | . . . . . 6 ⊢ ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0}))) |
26 | 16, 25 | mpbi 222 | . . . . 5 ⊢ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0})) |
27 | 26 | simpli 476 | . . . 4 ⊢ {1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) |
28 | 1z 11822 | . . . . 5 ⊢ 1 ∈ ℤ | |
29 | neg1z 11828 | . . . . 5 ⊢ -1 ∈ ℤ | |
30 | prssi 4626 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ) | |
31 | 28, 29, 30 | mp2an 679 | . . . 4 ⊢ {1, -1} ⊆ ℤ |
32 | zsubrg 20294 | . . . . 5 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
33 | 22 | subrgsubm 19265 | . . . . 5 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld))) |
34 | zringmpg 20335 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | |
35 | 34 | eqcomi 2784 | . . . . . 6 ⊢ (mulGrp‘ℤring) = ((mulGrp‘ℂfld) ↾s ℤ) |
36 | 35 | subsubm 17819 | . . . . 5 ⊢ (ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ))) |
37 | 32, 33, 36 | mp2b 10 | . . . 4 ⊢ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ)) |
38 | 27, 31, 37 | mpbir2an 698 | . . 3 ⊢ {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) |
39 | zex 11799 | . . . . . 6 ⊢ ℤ ∈ V | |
40 | ressabs 16413 | . . . . . 6 ⊢ ((ℤ ∈ V ∧ {1, -1} ⊆ ℤ) → (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})) | |
41 | 39, 31, 40 | mp2an 679 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) |
42 | 34 | oveq1i 6984 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1}) |
43 | 41, 42 | eqtr3i 2801 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1}) |
44 | 43 | resmhm2 17822 | . . 3 ⊢ (((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring))) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) |
45 | 12, 38, 44 | sylancl 577 | . 2 ⊢ (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) |
46 | mhmco 17824 | . 2 ⊢ (((ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅)) ∧ (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) | |
47 | 6, 45, 46 | syl2an 586 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 Vcvv 3412 ∖ cdif 3825 ⊆ wss 3828 {csn 4439 {cpr 4441 ∘ ccom 5408 ‘cfv 6186 (class class class)co 6974 Fincfn 8302 ℂcc 10329 0cc0 10331 1c1 10332 -cneg 10667 ℤcz 11790 ↾s cress 16334 MndHom cmhm 17795 SubMndcsubmnd 17796 SubGrpcsubg 18051 GrpHom cghm 18120 SymGrpcsymg 18260 pmSgncpsgn 18372 mulGrpcmgp 18956 Ringcrg 19014 RingHom crh 19181 SubRingcsubrg 19248 ℂfldccnfld 20241 ℤringzring 20313 ℤRHomczrh 20343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-rep 5047 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 ax-cnex 10387 ax-resscn 10388 ax-1cn 10389 ax-icn 10390 ax-addcl 10391 ax-addrcl 10392 ax-mulcl 10393 ax-mulrcl 10394 ax-mulcom 10395 ax-addass 10396 ax-mulass 10397 ax-distr 10398 ax-i2m1 10399 ax-1ne0 10400 ax-1rid 10401 ax-rnegex 10402 ax-rrecex 10403 ax-cnre 10404 ax-pre-lttri 10405 ax-pre-lttrn 10406 ax-pre-ltadd 10407 ax-pre-mulgt0 10408 ax-addf 10410 ax-mulf 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-xor 1489 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ne 2965 df-nel 3071 df-ral 3090 df-rex 3091 df-reu 3092 df-rmo 3093 df-rab 3094 df-v 3414 df-sbc 3681 df-csb 3786 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-pss 3844 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-tp 4444 df-op 4446 df-ot 4448 df-uni 4711 df-int 4748 df-iun 4792 df-iin 4793 df-br 4928 df-opab 4990 df-mpt 5007 df-tr 5029 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7498 df-2nd 7499 df-tpos 7692 df-wrecs 7747 df-recs 7809 df-rdg 7847 df-1o 7901 df-2o 7902 df-oadd 7905 df-er 8085 df-map 8204 df-en 8303 df-dom 8304 df-sdom 8305 df-fin 8306 df-card 9158 df-pnf 10472 df-mnf 10473 df-xr 10474 df-ltxr 10475 df-le 10476 df-sub 10668 df-neg 10669 df-div 11095 df-nn 11436 df-2 11500 df-3 11501 df-4 11502 df-5 11503 df-6 11504 df-7 11505 df-8 11506 df-9 11507 df-n0 11705 df-xnn0 11777 df-z 11791 df-dec 11909 df-uz 12056 df-rp 12202 df-fz 12706 df-fzo 12847 df-seq 13182 df-exp 13242 df-hash 13503 df-word 13667 df-lsw 13720 df-concat 13728 df-s1 13753 df-substr 13798 df-pfx 13847 df-splice 13954 df-reverse 13972 df-s2 14066 df-struct 16335 df-ndx 16336 df-slot 16337 df-base 16339 df-sets 16340 df-ress 16341 df-plusg 16428 df-mulr 16429 df-starv 16430 df-tset 16434 df-ple 16435 df-ds 16437 df-unif 16438 df-0g 16565 df-gsum 16566 df-mre 16709 df-mrc 16710 df-acs 16712 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-mhm 17797 df-submnd 17798 df-grp 17888 df-minusg 17889 df-mulg 18006 df-subg 18054 df-ghm 18121 df-gim 18164 df-oppg 18239 df-symg 18261 df-pmtr 18325 df-psgn 18374 df-cmn 18662 df-abl 18663 df-mgp 18957 df-ur 18969 df-ring 19016 df-cring 19017 df-oppr 19090 df-dvdsr 19108 df-unit 19109 df-invr 19139 df-dvr 19150 df-rnghom 19184 df-drng 19221 df-subrg 19250 df-cnfld 20242 df-zring 20314 df-zrh 20347 |
This theorem is referenced by: madetsumid 20768 mdetleib2 20895 mdetf 20902 mdetdiaglem 20905 mdetrlin 20909 mdetrsca 20910 mdetralt 20915 mdetunilem7 20925 mdetunilem8 20926 |
Copyright terms: Public domain | W3C validator |