MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgnmhm Structured version   Visualization version   GIF version

Theorem zrhpsgnmhm 20424
Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.)
Assertion
Ref Expression
zrhpsgnmhm ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅)))

Proof of Theorem zrhpsgnmhm
StepHypRef Expression
1 eqid 2775 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
21zrhrhm 20355 . . 3 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
3 eqid 2775 . . . 4 (mulGrp‘ℤring) = (mulGrp‘ℤring)
4 eqid 2775 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
53, 4rhmmhm 19191 . . 3 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅)))
62, 5syl 17 . 2 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅)))
7 eqid 2775 . . . . 5 (SymGrp‘𝐴) = (SymGrp‘𝐴)
8 eqid 2775 . . . . 5 (pmSgn‘𝐴) = (pmSgn‘𝐴)
9 eqid 2775 . . . . 5 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
107, 8, 9psgnghm2 20421 . . . 4 (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
11 ghmmhm 18133 . . . 4 ((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1})))
1210, 11syl 17 . . 3 (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1})))
13 eqid 2775 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1413cnmsgnsubg 20417 . . . . . . 7 {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
15 subgsubm 18079 . . . . . . 7 ({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
1614, 15ax-mp 5 . . . . . 6 {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
17 cnring 20263 . . . . . . 7 fld ∈ Ring
18 cnfldbas 20245 . . . . . . . . 9 ℂ = (Base‘ℂfld)
19 cnfld0 20265 . . . . . . . . 9 0 = (0g‘ℂfld)
20 cndrng 20270 . . . . . . . . 9 fld ∈ DivRing
2118, 19, 20drngui 19225 . . . . . . . 8 (ℂ ∖ {0}) = (Unit‘ℂfld)
22 eqid 2775 . . . . . . . 8 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2321, 22unitsubm 19137 . . . . . . 7 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
2413subsubm 17819 . . . . . . 7 ((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0}))))
2517, 23, 24mp2b 10 . . . . . 6 ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0})))
2616, 25mpbi 222 . . . . 5 ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0}))
2726simpli 476 . . . 4 {1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld))
28 1z 11822 . . . . 5 1 ∈ ℤ
29 neg1z 11828 . . . . 5 -1 ∈ ℤ
30 prssi 4626 . . . . 5 ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ)
3128, 29, 30mp2an 679 . . . 4 {1, -1} ⊆ ℤ
32 zsubrg 20294 . . . . 5 ℤ ∈ (SubRing‘ℂfld)
3322subrgsubm 19265 . . . . 5 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
34 zringmpg 20335 . . . . . . 7 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
3534eqcomi 2784 . . . . . 6 (mulGrp‘ℤring) = ((mulGrp‘ℂfld) ↾s ℤ)
3635subsubm 17819 . . . . 5 (ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ)))
3732, 33, 36mp2b 10 . . . 4 ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ))
3827, 31, 37mpbir2an 698 . . 3 {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring))
39 zex 11799 . . . . . 6 ℤ ∈ V
40 ressabs 16413 . . . . . 6 ((ℤ ∈ V ∧ {1, -1} ⊆ ℤ) → (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}))
4139, 31, 40mp2an 679 . . . . 5 (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
4234oveq1i 6984 . . . . 5 (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1})
4341, 42eqtr3i 2801 . . . 4 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1})
4443resmhm2 17822 . . 3 (((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring))) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring)))
4512, 38, 44sylancl 577 . 2 (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring)))
46 mhmco 17824 . 2 (((ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅)) ∧ (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅)))
476, 45, 46syl2an 586 1 ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  Vcvv 3412  cdif 3825  wss 3828  {csn 4439  {cpr 4441  ccom 5408  cfv 6186  (class class class)co 6974  Fincfn 8302  cc 10329  0cc0 10331  1c1 10332  -cneg 10667  cz 11790  s cress 16334   MndHom cmhm 17795  SubMndcsubmnd 17796  SubGrpcsubg 18051   GrpHom cghm 18120  SymGrpcsymg 18260  pmSgncpsgn 18372  mulGrpcmgp 18956  Ringcrg 19014   RingHom crh 19181  SubRingcsubrg 19248  fldccnfld 20241  ringzring 20313  ℤRHomczrh 20343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-rep 5047  ax-sep 5058  ax-nul 5065  ax-pow 5117  ax-pr 5184  ax-un 7277  ax-cnex 10387  ax-resscn 10388  ax-1cn 10389  ax-icn 10390  ax-addcl 10391  ax-addrcl 10392  ax-mulcl 10393  ax-mulrcl 10394  ax-mulcom 10395  ax-addass 10396  ax-mulass 10397  ax-distr 10398  ax-i2m1 10399  ax-1ne0 10400  ax-1rid 10401  ax-rnegex 10402  ax-rrecex 10403  ax-cnre 10404  ax-pre-lttri 10405  ax-pre-lttrn 10406  ax-pre-ltadd 10407  ax-pre-mulgt0 10408  ax-addf 10410  ax-mulf 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-xor 1489  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ne 2965  df-nel 3071  df-ral 3090  df-rex 3091  df-reu 3092  df-rmo 3093  df-rab 3094  df-v 3414  df-sbc 3681  df-csb 3786  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-pss 3844  df-nul 4178  df-if 4349  df-pw 4422  df-sn 4440  df-pr 4442  df-tp 4444  df-op 4446  df-ot 4448  df-uni 4711  df-int 4748  df-iun 4792  df-iin 4793  df-br 4928  df-opab 4990  df-mpt 5007  df-tr 5029  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7498  df-2nd 7499  df-tpos 7692  df-wrecs 7747  df-recs 7809  df-rdg 7847  df-1o 7901  df-2o 7902  df-oadd 7905  df-er 8085  df-map 8204  df-en 8303  df-dom 8304  df-sdom 8305  df-fin 8306  df-card 9158  df-pnf 10472  df-mnf 10473  df-xr 10474  df-ltxr 10475  df-le 10476  df-sub 10668  df-neg 10669  df-div 11095  df-nn 11436  df-2 11500  df-3 11501  df-4 11502  df-5 11503  df-6 11504  df-7 11505  df-8 11506  df-9 11507  df-n0 11705  df-xnn0 11777  df-z 11791  df-dec 11909  df-uz 12056  df-rp 12202  df-fz 12706  df-fzo 12847  df-seq 13182  df-exp 13242  df-hash 13503  df-word 13667  df-lsw 13720  df-concat 13728  df-s1 13753  df-substr 13798  df-pfx 13847  df-splice 13954  df-reverse 13972  df-s2 14066  df-struct 16335  df-ndx 16336  df-slot 16337  df-base 16339  df-sets 16340  df-ress 16341  df-plusg 16428  df-mulr 16429  df-starv 16430  df-tset 16434  df-ple 16435  df-ds 16437  df-unif 16438  df-0g 16565  df-gsum 16566  df-mre 16709  df-mrc 16710  df-acs 16712  df-mgm 17704  df-sgrp 17746  df-mnd 17757  df-mhm 17797  df-submnd 17798  df-grp 17888  df-minusg 17889  df-mulg 18006  df-subg 18054  df-ghm 18121  df-gim 18164  df-oppg 18239  df-symg 18261  df-pmtr 18325  df-psgn 18374  df-cmn 18662  df-abl 18663  df-mgp 18957  df-ur 18969  df-ring 19016  df-cring 19017  df-oppr 19090  df-dvdsr 19108  df-unit 19109  df-invr 19139  df-dvr 19150  df-rnghom 19184  df-drng 19221  df-subrg 19250  df-cnfld 20242  df-zring 20314  df-zrh 20347
This theorem is referenced by:  madetsumid  20768  mdetleib2  20895  mdetf  20902  mdetdiaglem  20905  mdetrlin  20909  mdetrsca  20910  mdetralt  20915  mdetunilem7  20925  mdetunilem8  20926
  Copyright terms: Public domain W3C validator