Step | Hyp | Ref
| Expression |
1 | | amgmlemALT.0 |
. . 3
⊢ 𝑀 =
(mulGrp‘ℂfld) |
2 | | amgmlemALT.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
3 | | amgmlemALT.2 |
. . 3
⊢ (𝜑 → 𝐴 ≠ ∅) |
4 | | amgmlemALT.3 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) |
5 | | hashnncl 14081 |
. . . . . . . 8
⊢ (𝐴 ∈ Fin →
((♯‘𝐴) ∈
ℕ ↔ 𝐴 ≠
∅)) |
6 | 2, 5 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
7 | 3, 6 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐴) ∈
ℕ) |
8 | 7 | nnrpd 12770 |
. . . . 5
⊢ (𝜑 → (♯‘𝐴) ∈
ℝ+) |
9 | 8 | rpreccld 12782 |
. . . 4
⊢ (𝜑 → (1 / (♯‘𝐴)) ∈
ℝ+) |
10 | | fconst6g 6663 |
. . . 4
⊢ ((1 /
(♯‘𝐴)) ∈
ℝ+ → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+) |
11 | 9, 10 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+) |
12 | | fconstmpt 5649 |
. . . . . 6
⊢ (𝐴 × {(1 /
(♯‘𝐴))}) =
(𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴))) |
13 | 12 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴)))) |
14 | 13 | oveq2d 7291 |
. . . 4
⊢ (𝜑 → (ℂfld
Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴))))) |
15 | 7 | nnrecred 12024 |
. . . . . 6
⊢ (𝜑 → (1 / (♯‘𝐴)) ∈
ℝ) |
16 | 15 | recnd 11003 |
. . . . 5
⊢ (𝜑 → (1 / (♯‘𝐴)) ∈
ℂ) |
17 | | simpl 483 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ (1 /
(♯‘𝐴)) ∈
ℂ) → 𝐴 ∈
Fin) |
18 | | simplr 766 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ (1 /
(♯‘𝐴)) ∈
ℂ) ∧ 𝑘 ∈
𝐴) → (1 /
(♯‘𝐴)) ∈
ℂ) |
19 | 17, 18 | gsumfsum 20665 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ (1 /
(♯‘𝐴)) ∈
ℂ) → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘 ∈ 𝐴 (1 / (♯‘𝐴))) |
20 | 2, 16, 19 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘 ∈ 𝐴 (1 / (♯‘𝐴))) |
21 | | fsumconst 15502 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ (1 /
(♯‘𝐴)) ∈
ℂ) → Σ𝑘
∈ 𝐴 (1 /
(♯‘𝐴)) =
((♯‘𝐴) ·
(1 / (♯‘𝐴)))) |
22 | 2, 16, 21 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴)))) |
23 | 7 | nncnd 11989 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐴) ∈
ℂ) |
24 | 7 | nnne0d 12023 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐴) ≠ 0) |
25 | 23, 24 | recidd 11746 |
. . . . 5
⊢ (𝜑 → ((♯‘𝐴) · (1 /
(♯‘𝐴))) =
1) |
26 | 22, 25 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (1 / (♯‘𝐴)) = 1) |
27 | 14, 20, 26 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → (ℂfld
Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1) |
28 | 1, 2, 3, 4, 11, 27 | amgmwlem 46506 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f
↑𝑐(𝐴 × {(1 / (♯‘𝐴))}))) ≤
(ℂfld Σg (𝐹 ∘f · (𝐴 × {(1 /
(♯‘𝐴))})))) |
29 | | rpssre 12737 |
. . . . . 6
⊢
ℝ+ ⊆ ℝ |
30 | | ax-resscn 10928 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
31 | 29, 30 | sstri 3930 |
. . . . 5
⊢
ℝ+ ⊆ ℂ |
32 | | eqid 2738 |
. . . . . 6
⊢ (𝑀 ↾s
ℝ+) = (𝑀
↾s ℝ+) |
33 | | cnfldbas 20601 |
. . . . . . 7
⊢ ℂ =
(Base‘ℂfld) |
34 | 1, 33 | mgpbas 19726 |
. . . . . 6
⊢ ℂ =
(Base‘𝑀) |
35 | 32, 34 | ressbas2 16949 |
. . . . 5
⊢
(ℝ+ ⊆ ℂ → ℝ+ =
(Base‘(𝑀
↾s ℝ+))) |
36 | 31, 35 | ax-mp 5 |
. . . 4
⊢
ℝ+ = (Base‘(𝑀 ↾s
ℝ+)) |
37 | | cnfld1 20623 |
. . . . . 6
⊢ 1 =
(1r‘ℂfld) |
38 | 1, 37 | ringidval 19739 |
. . . . 5
⊢ 1 =
(0g‘𝑀) |
39 | 1 | oveq1i 7285 |
. . . . . . . . . 10
⊢ (𝑀 ↾s (ℂ
∖ {0})) = ((mulGrp‘ℂfld) ↾s
(ℂ ∖ {0})) |
40 | 39 | rpmsubg 20662 |
. . . . . . . . 9
⊢
ℝ+ ∈ (SubGrp‘(𝑀 ↾s (ℂ ∖
{0}))) |
41 | | subgsubm 18777 |
. . . . . . . . 9
⊢
(ℝ+ ∈ (SubGrp‘(𝑀 ↾s (ℂ ∖ {0})))
→ ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖
{0})))) |
42 | 40, 41 | ax-mp 5 |
. . . . . . . 8
⊢
ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖
{0}))) |
43 | | cnring 20620 |
. . . . . . . . . 10
⊢
ℂfld ∈ Ring |
44 | | cnfld0 20622 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘ℂfld) |
45 | | cndrng 20627 |
. . . . . . . . . . . 12
⊢
ℂfld ∈ DivRing |
46 | 33, 44, 45 | drngui 19997 |
. . . . . . . . . . 11
⊢ (ℂ
∖ {0}) = (Unit‘ℂfld) |
47 | 46, 1 | unitsubm 19912 |
. . . . . . . . . 10
⊢
(ℂfld ∈ Ring → (ℂ ∖ {0}) ∈
(SubMnd‘𝑀)) |
48 | 43, 47 | ax-mp 5 |
. . . . . . . . 9
⊢ (ℂ
∖ {0}) ∈ (SubMnd‘𝑀) |
49 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑀 ↾s (ℂ
∖ {0})) = (𝑀
↾s (ℂ ∖ {0})) |
50 | 49 | subsubm 18455 |
. . . . . . . . 9
⊢ ((ℂ
∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈
(SubMnd‘(𝑀
↾s (ℂ ∖ {0}))) ↔ (ℝ+ ∈
(SubMnd‘𝑀) ∧
ℝ+ ⊆ (ℂ ∖ {0})))) |
51 | 48, 50 | ax-mp 5 |
. . . . . . . 8
⊢
(ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖ {0})))
↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ
∖ {0}))) |
52 | 42, 51 | mpbi 229 |
. . . . . . 7
⊢
(ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ
∖ {0})) |
53 | 52 | simpli 484 |
. . . . . 6
⊢
ℝ+ ∈ (SubMnd‘𝑀) |
54 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑀) = (0g‘𝑀) |
55 | 32, 54 | subm0 18454 |
. . . . . 6
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → (0g‘𝑀) = (0g‘(𝑀 ↾s
ℝ+))) |
56 | 53, 55 | ax-mp 5 |
. . . . 5
⊢
(0g‘𝑀) = (0g‘(𝑀 ↾s
ℝ+)) |
57 | 38, 56 | eqtri 2766 |
. . . 4
⊢ 1 =
(0g‘(𝑀
↾s ℝ+)) |
58 | | cncrng 20619 |
. . . . . 6
⊢
ℂfld ∈ CRing |
59 | 1 | crngmgp 19791 |
. . . . . 6
⊢
(ℂfld ∈ CRing → 𝑀 ∈ CMnd) |
60 | 58, 59 | ax-mp 5 |
. . . . 5
⊢ 𝑀 ∈ CMnd |
61 | 32 | submmnd 18452 |
. . . . . 6
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → (𝑀 ↾s ℝ+)
∈ Mnd) |
62 | 53, 61 | mp1i 13 |
. . . . 5
⊢ (𝜑 → (𝑀 ↾s ℝ+)
∈ Mnd) |
63 | 32 | subcmn 19438 |
. . . . 5
⊢ ((𝑀 ∈ CMnd ∧ (𝑀 ↾s
ℝ+) ∈ Mnd) → (𝑀 ↾s ℝ+)
∈ CMnd) |
64 | 60, 62, 63 | sylancr 587 |
. . . 4
⊢ (𝜑 → (𝑀 ↾s ℝ+)
∈ CMnd) |
65 | | reex 10962 |
. . . . . . . 8
⊢ ℝ
∈ V |
66 | 65, 29 | ssexi 5246 |
. . . . . . 7
⊢
ℝ+ ∈ V |
67 | | cnfldmul 20603 |
. . . . . . . . 9
⊢ ·
= (.r‘ℂfld) |
68 | 1, 67 | mgpplusg 19724 |
. . . . . . . 8
⊢ ·
= (+g‘𝑀) |
69 | 32, 68 | ressplusg 17000 |
. . . . . . 7
⊢
(ℝ+ ∈ V → · =
(+g‘(𝑀
↾s ℝ+))) |
70 | 66, 69 | ax-mp 5 |
. . . . . 6
⊢ ·
= (+g‘(𝑀
↾s ℝ+)) |
71 | | eqid 2738 |
. . . . . . . 8
⊢
((mulGrp‘ℂfld) ↾s (ℂ
∖ {0})) = ((mulGrp‘ℂfld) ↾s
(ℂ ∖ {0})) |
72 | 71 | rpmsubg 20662 |
. . . . . . 7
⊢
ℝ+ ∈
(SubGrp‘((mulGrp‘ℂfld) ↾s
(ℂ ∖ {0}))) |
73 | 1 | oveq1i 7285 |
. . . . . . . . 9
⊢ (𝑀 ↾s
ℝ+) = ((mulGrp‘ℂfld)
↾s ℝ+) |
74 | | cnex 10952 |
. . . . . . . . . . 11
⊢ ℂ
∈ V |
75 | | difss 4066 |
. . . . . . . . . . 11
⊢ (ℂ
∖ {0}) ⊆ ℂ |
76 | 74, 75 | ssexi 5246 |
. . . . . . . . . 10
⊢ (ℂ
∖ {0}) ∈ V |
77 | | rpcndif0 12749 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ℝ+
→ 𝑤 ∈ (ℂ
∖ {0})) |
78 | 77 | ssriv 3925 |
. . . . . . . . . 10
⊢
ℝ+ ⊆ (ℂ ∖ {0}) |
79 | | ressabs 16959 |
. . . . . . . . . 10
⊢
(((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆
(ℂ ∖ {0})) → (((mulGrp‘ℂfld)
↾s (ℂ ∖ {0})) ↾s
ℝ+) = ((mulGrp‘ℂfld)
↾s ℝ+)) |
80 | 76, 78, 79 | mp2an 689 |
. . . . . . . . 9
⊢
(((mulGrp‘ℂfld) ↾s (ℂ
∖ {0})) ↾s ℝ+) =
((mulGrp‘ℂfld) ↾s
ℝ+) |
81 | 73, 80 | eqtr4i 2769 |
. . . . . . . 8
⊢ (𝑀 ↾s
ℝ+) = (((mulGrp‘ℂfld)
↾s (ℂ ∖ {0})) ↾s
ℝ+) |
82 | 81 | subggrp 18758 |
. . . . . . 7
⊢
(ℝ+ ∈
(SubGrp‘((mulGrp‘ℂfld) ↾s
(ℂ ∖ {0}))) → (𝑀 ↾s ℝ+)
∈ Grp) |
83 | 72, 82 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (𝑀 ↾s ℝ+)
∈ Grp) |
84 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ+) → 𝑘 ∈
ℝ+) |
85 | 15 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ+) → (1 /
(♯‘𝐴)) ∈
ℝ) |
86 | 84, 85 | rpcxpcld 25887 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ+) → (𝑘↑𝑐(1 /
(♯‘𝐴))) ∈
ℝ+) |
87 | | eqid 2738 |
. . . . . . 7
⊢ (𝑘 ∈ ℝ+
↦ (𝑘↑𝑐(1 /
(♯‘𝐴)))) =
(𝑘 ∈
ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴)))) |
88 | 86, 87 | fmptd 6988 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴)))):ℝ+⟶ℝ+) |
89 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ 𝑥 ∈
ℝ+) |
90 | 89 | rprege0d 12779 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
91 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ 𝑦 ∈
ℝ+) |
92 | 91 | rprege0d 12779 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (𝑦 ∈ ℝ
∧ 0 ≤ 𝑦)) |
93 | 16 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (1 / (♯‘𝐴)) ∈ ℂ) |
94 | | mulcxp 25840 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤
𝑦) ∧ (1 /
(♯‘𝐴)) ∈
ℂ) → ((𝑥
· 𝑦)↑𝑐(1 /
(♯‘𝐴))) =
((𝑥↑𝑐(1 /
(♯‘𝐴)))
· (𝑦↑𝑐(1 /
(♯‘𝐴))))) |
95 | 90, 92, 93, 94 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ ((𝑥 · 𝑦)↑𝑐(1 /
(♯‘𝐴))) =
((𝑥↑𝑐(1 /
(♯‘𝐴)))
· (𝑦↑𝑐(1 /
(♯‘𝐴))))) |
96 | | rpmulcl 12753 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈
ℝ+) → (𝑥 · 𝑦) ∈
ℝ+) |
97 | 96 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (𝑥 · 𝑦) ∈
ℝ+) |
98 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑘 = (𝑥 · 𝑦) → (𝑘↑𝑐(1 /
(♯‘𝐴))) =
((𝑥 · 𝑦)↑𝑐(1 /
(♯‘𝐴)))) |
99 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝑘↑𝑐(1 /
(♯‘𝐴))) ∈
V |
100 | 98, 87, 99 | fvmpt3i 6880 |
. . . . . . . 8
⊢ ((𝑥 · 𝑦) ∈ ℝ+ → ((𝑘 ∈ ℝ+
↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 /
(♯‘𝐴)))) |
101 | 97, 100 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ ((𝑘 ∈
ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 /
(♯‘𝐴)))) |
102 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝑘↑𝑐(1 /
(♯‘𝐴))) =
(𝑥↑𝑐(1 /
(♯‘𝐴)))) |
103 | 102, 87, 99 | fvmpt3i 6880 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ ((𝑘 ∈
ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘𝑥) = (𝑥↑𝑐(1 /
(♯‘𝐴)))) |
104 | 89, 103 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ ((𝑘 ∈
ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘𝑥) = (𝑥↑𝑐(1 /
(♯‘𝐴)))) |
105 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → (𝑘↑𝑐(1 /
(♯‘𝐴))) =
(𝑦↑𝑐(1 /
(♯‘𝐴)))) |
106 | 105, 87, 99 | fvmpt3i 6880 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ+
→ ((𝑘 ∈
ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘𝑦) = (𝑦↑𝑐(1 /
(♯‘𝐴)))) |
107 | 91, 106 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ ((𝑘 ∈
ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘𝑦) = (𝑦↑𝑐(1 /
(♯‘𝐴)))) |
108 | 104, 107 | oveq12d 7293 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (((𝑘 ∈
ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘𝑦)) = ((𝑥↑𝑐(1 /
(♯‘𝐴)))
· (𝑦↑𝑐(1 /
(♯‘𝐴))))) |
109 | 95, 101, 108 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ ((𝑘 ∈
ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘(𝑥 · 𝑦)) = (((𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘𝑦))) |
110 | 36, 36, 70, 70, 83, 83, 88, 109 | isghmd 18843 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴)))) ∈
((𝑀 ↾s
ℝ+) GrpHom (𝑀 ↾s
ℝ+))) |
111 | | ghmmhm 18844 |
. . . . 5
⊢ ((𝑘 ∈ ℝ+
↦ (𝑘↑𝑐(1 /
(♯‘𝐴)))) ∈
((𝑀 ↾s
ℝ+) GrpHom (𝑀 ↾s ℝ+))
→ (𝑘 ∈
ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴)))) ∈
((𝑀 ↾s
ℝ+) MndHom (𝑀 ↾s
ℝ+))) |
112 | 110, 111 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴)))) ∈
((𝑀 ↾s
ℝ+) MndHom (𝑀 ↾s
ℝ+))) |
113 | | 1red 10976 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ) |
114 | 4, 2, 113 | fdmfifsupp 9138 |
. . . 4
⊢ (𝜑 → 𝐹 finSupp 1) |
115 | 36, 57, 64, 62, 2, 112, 4, 114 | gsummhm 19539 |
. . 3
⊢ (𝜑 → ((𝑀 ↾s ℝ+)
Σg ((𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))
∘ 𝐹)) = ((𝑘 ∈ ℝ+
↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘((𝑀 ↾s ℝ+)
Σg 𝐹))) |
116 | 53 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ+ ∈
(SubMnd‘𝑀)) |
117 | 4 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈
ℝ+) |
118 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1 / (♯‘𝐴)) ∈
ℝ) |
119 | 117, 118 | rpcxpcld 25887 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴))) ∈
ℝ+) |
120 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴)))) =
(𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴)))) |
121 | 119, 120 | fmptd 6988 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴)))):𝐴⟶ℝ+) |
122 | 2, 116, 121, 32 | gsumsubm 18473 |
. . . 4
⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴))))) =
((𝑀 ↾s
ℝ+) Σg (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴)))))) |
123 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1 / (♯‘𝐴)) ∈
ℝ+) |
124 | 4 | feqmptd 6837 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
125 | 2, 117, 123, 124, 13 | offval2 7553 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘f
↑𝑐(𝐴 × {(1 / (♯‘𝐴))})) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴))))) |
126 | 125 | oveq2d 7291 |
. . . 4
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f
↑𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = (𝑀 Σg (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴)))))) |
127 | 102 | cbvmptv 5187 |
. . . . . . 7
⊢ (𝑘 ∈ ℝ+
↦ (𝑘↑𝑐(1 /
(♯‘𝐴)))) =
(𝑥 ∈
ℝ+ ↦ (𝑥↑𝑐(1 /
(♯‘𝐴)))) |
128 | 127 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴)))) =
(𝑥 ∈
ℝ+ ↦ (𝑥↑𝑐(1 /
(♯‘𝐴))))) |
129 | | oveq1 7282 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑘) → (𝑥↑𝑐(1 /
(♯‘𝐴))) =
((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴)))) |
130 | 117, 124,
128, 129 | fmptco 7001 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))
∘ 𝐹) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴))))) |
131 | 130 | oveq2d 7291 |
. . . 4
⊢ (𝜑 → ((𝑀 ↾s ℝ+)
Σg ((𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))
∘ 𝐹)) = ((𝑀 ↾s
ℝ+) Σg (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)↑𝑐(1 /
(♯‘𝐴)))))) |
132 | 122, 126,
131 | 3eqtr4rd 2789 |
. . 3
⊢ (𝜑 → ((𝑀 ↾s ℝ+)
Σg ((𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))
∘ 𝐹)) = (𝑀 Σg
(𝐹 ∘f
↑𝑐(𝐴 × {(1 / (♯‘𝐴))})))) |
133 | 36, 57, 64, 2, 4, 114 | gsumcl 19516 |
. . . . 5
⊢ (𝜑 → ((𝑀 ↾s ℝ+)
Σg 𝐹) ∈
ℝ+) |
134 | | oveq1 7282 |
. . . . . 6
⊢ (𝑘 = ((𝑀 ↾s ℝ+)
Σg 𝐹) → (𝑘↑𝑐(1 /
(♯‘𝐴))) =
(((𝑀 ↾s
ℝ+) Σg 𝐹)↑𝑐(1 /
(♯‘𝐴)))) |
135 | 134, 87, 99 | fvmpt3i 6880 |
. . . . 5
⊢ (((𝑀 ↾s
ℝ+) Σg 𝐹) ∈ ℝ+ → ((𝑘 ∈ ℝ+
↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘((𝑀 ↾s ℝ+)
Σg 𝐹)) = (((𝑀 ↾s ℝ+)
Σg 𝐹)↑𝑐(1 /
(♯‘𝐴)))) |
136 | 133, 135 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘((𝑀 ↾s ℝ+)
Σg 𝐹)) = (((𝑀 ↾s ℝ+)
Σg 𝐹)↑𝑐(1 /
(♯‘𝐴)))) |
137 | 2, 116, 4, 32 | gsumsubm 18473 |
. . . . 5
⊢ (𝜑 → (𝑀 Σg 𝐹) = ((𝑀 ↾s ℝ+)
Σg 𝐹)) |
138 | 137 | oveq1d 7290 |
. . . 4
⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 /
(♯‘𝐴))) =
(((𝑀 ↾s
ℝ+) Σg 𝐹)↑𝑐(1 /
(♯‘𝐴)))) |
139 | 136, 138 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘↑𝑐(1 /
(♯‘𝐴))))‘((𝑀 ↾s ℝ+)
Σg 𝐹)) = ((𝑀 Σg 𝐹)↑𝑐(1 /
(♯‘𝐴)))) |
140 | 115, 132,
139 | 3eqtr3d 2786 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f
↑𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = ((𝑀 Σg 𝐹)↑𝑐(1 /
(♯‘𝐴)))) |
141 | 117 | rpcnd 12774 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℂ) |
142 | 2, 141 | fsumcl 15445 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ ℂ) |
143 | 142, 23, 24 | divrecd 11754 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 (𝐹‘𝑘) / (♯‘𝐴)) = (Σ𝑘 ∈ 𝐴 (𝐹‘𝑘) · (1 / (♯‘𝐴)))) |
144 | 2, 16, 141 | fsummulc1 15497 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 (𝐹‘𝑘) · (1 / (♯‘𝐴))) = Σ𝑘 ∈ 𝐴 ((𝐹‘𝑘) · (1 / (♯‘𝐴)))) |
145 | 143, 144 | eqtr2d 2779 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 ((𝐹‘𝑘) · (1 / (♯‘𝐴))) = (Σ𝑘 ∈ 𝐴 (𝐹‘𝑘) / (♯‘𝐴))) |
146 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1 / (♯‘𝐴)) ∈
ℂ) |
147 | 141, 146 | mulcld 10995 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) · (1 / (♯‘𝐴))) ∈
ℂ) |
148 | 2, 147 | gsumfsum 20665 |
. . . 4
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) · (1 / (♯‘𝐴))))) = Σ𝑘 ∈ 𝐴 ((𝐹‘𝑘) · (1 / (♯‘𝐴)))) |
149 | 2, 141 | gsumfsum 20665 |
. . . . 5
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
150 | 149 | oveq1d 7290 |
. . . 4
⊢ (𝜑 → ((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) / (♯‘𝐴)) = (Σ𝑘 ∈ 𝐴 (𝐹‘𝑘) / (♯‘𝐴))) |
151 | 145, 148,
150 | 3eqtr4d 2788 |
. . 3
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) · (1 / (♯‘𝐴))))) = ((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) / (♯‘𝐴))) |
152 | 2, 117, 146, 124, 13 | offval2 7553 |
. . . 4
⊢ (𝜑 → (𝐹 ∘f · (𝐴 × {(1 /
(♯‘𝐴))})) =
(𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) · (1 / (♯‘𝐴))))) |
153 | 152 | oveq2d 7291 |
. . 3
⊢ (𝜑 → (ℂfld
Σg (𝐹 ∘f · (𝐴 × {(1 /
(♯‘𝐴))}))) =
(ℂfld Σg (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) · (1 / (♯‘𝐴)))))) |
154 | 124 | oveq2d 7291 |
. . . 4
⊢ (𝜑 → (ℂfld
Σg 𝐹) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) |
155 | 154 | oveq1d 7290 |
. . 3
⊢ (𝜑 → ((ℂfld
Σg 𝐹) / (♯‘𝐴)) = ((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) / (♯‘𝐴))) |
156 | 151, 153,
155 | 3eqtr4d 2788 |
. 2
⊢ (𝜑 → (ℂfld
Σg (𝐹 ∘f · (𝐴 × {(1 /
(♯‘𝐴))}))) =
((ℂfld Σg 𝐹) / (♯‘𝐴))) |
157 | 28, 140, 156 | 3brtr3d 5105 |
1
⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 /
(♯‘𝐴))) ≤
((ℂfld Σg 𝐹) / (♯‘𝐴))) |