Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmlemALT Structured version   Visualization version   GIF version

Theorem amgmlemALT 46507
Description: Alternate proof of amgmlem 26139 using amgmwlem 46506. (Contributed by Kunhao Zheng, 20-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
amgmlemALT.0 𝑀 = (mulGrp‘ℂfld)
amgmlemALT.1 (𝜑𝐴 ∈ Fin)
amgmlemALT.2 (𝜑𝐴 ≠ ∅)
amgmlemALT.3 (𝜑𝐹:𝐴⟶ℝ+)
Assertion
Ref Expression
amgmlemALT (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgmlemALT
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmlemALT.0 . . 3 𝑀 = (mulGrp‘ℂfld)
2 amgmlemALT.1 . . 3 (𝜑𝐴 ∈ Fin)
3 amgmlemALT.2 . . 3 (𝜑𝐴 ≠ ∅)
4 amgmlemALT.3 . . 3 (𝜑𝐹:𝐴⟶ℝ+)
5 hashnncl 14081 . . . . . . . 8 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
62, 5syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
73, 6mpbird 256 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℕ)
87nnrpd 12770 . . . . 5 (𝜑 → (♯‘𝐴) ∈ ℝ+)
98rpreccld 12782 . . . 4 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ+)
10 fconst6g 6663 . . . 4 ((1 / (♯‘𝐴)) ∈ ℝ+ → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+)
119, 10syl 17 . . 3 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+)
12 fconstmpt 5649 . . . . . 6 (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴)))
1312a1i 11 . . . . 5 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
1413oveq2d 7291 . . . 4 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))))
157nnrecred 12024 . . . . . 6 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ)
1615recnd 11003 . . . . 5 (𝜑 → (1 / (♯‘𝐴)) ∈ ℂ)
17 simpl 483 . . . . . 6 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → 𝐴 ∈ Fin)
18 simplr 766 . . . . . 6 (((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) ∧ 𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℂ)
1917, 18gsumfsum 20665 . . . . 5 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘𝐴 (1 / (♯‘𝐴)))
202, 16, 19syl2anc 584 . . . 4 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘𝐴 (1 / (♯‘𝐴)))
21 fsumconst 15502 . . . . . 6 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → Σ𝑘𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
222, 16, 21syl2anc 584 . . . . 5 (𝜑 → Σ𝑘𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
237nncnd 11989 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℂ)
247nnne0d 12023 . . . . . 6 (𝜑 → (♯‘𝐴) ≠ 0)
2523, 24recidd 11746 . . . . 5 (𝜑 → ((♯‘𝐴) · (1 / (♯‘𝐴))) = 1)
2622, 25eqtrd 2778 . . . 4 (𝜑 → Σ𝑘𝐴 (1 / (♯‘𝐴)) = 1)
2714, 20, 263eqtrd 2782 . . 3 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1)
281, 2, 3, 4, 11, 27amgmwlem 46506 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) ≤ (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))))
29 rpssre 12737 . . . . . 6 + ⊆ ℝ
30 ax-resscn 10928 . . . . . 6 ℝ ⊆ ℂ
3129, 30sstri 3930 . . . . 5 + ⊆ ℂ
32 eqid 2738 . . . . . 6 (𝑀s+) = (𝑀s+)
33 cnfldbas 20601 . . . . . . 7 ℂ = (Base‘ℂfld)
341, 33mgpbas 19726 . . . . . 6 ℂ = (Base‘𝑀)
3532, 34ressbas2 16949 . . . . 5 (ℝ+ ⊆ ℂ → ℝ+ = (Base‘(𝑀s+)))
3631, 35ax-mp 5 . . . 4 + = (Base‘(𝑀s+))
37 cnfld1 20623 . . . . . 6 1 = (1r‘ℂfld)
381, 37ringidval 19739 . . . . 5 1 = (0g𝑀)
391oveq1i 7285 . . . . . . . . . 10 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
4039rpmsubg 20662 . . . . . . . . 9 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
41 subgsubm 18777 . . . . . . . . 9 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
4240, 41ax-mp 5 . . . . . . . 8 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
43 cnring 20620 . . . . . . . . . 10 fld ∈ Ring
44 cnfld0 20622 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
45 cndrng 20627 . . . . . . . . . . . 12 fld ∈ DivRing
4633, 44, 45drngui 19997 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
4746, 1unitsubm 19912 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
4843, 47ax-mp 5 . . . . . . . . 9 (ℂ ∖ {0}) ∈ (SubMnd‘𝑀)
49 eqid 2738 . . . . . . . . . 10 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
5049subsubm 18455 . . . . . . . . 9 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
5148, 50ax-mp 5 . . . . . . . 8 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
5242, 51mpbi 229 . . . . . . 7 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
5352simpli 484 . . . . . 6 + ∈ (SubMnd‘𝑀)
54 eqid 2738 . . . . . . 7 (0g𝑀) = (0g𝑀)
5532, 54subm0 18454 . . . . . 6 (ℝ+ ∈ (SubMnd‘𝑀) → (0g𝑀) = (0g‘(𝑀s+)))
5653, 55ax-mp 5 . . . . 5 (0g𝑀) = (0g‘(𝑀s+))
5738, 56eqtri 2766 . . . 4 1 = (0g‘(𝑀s+))
58 cncrng 20619 . . . . . 6 fld ∈ CRing
591crngmgp 19791 . . . . . 6 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
6058, 59ax-mp 5 . . . . 5 𝑀 ∈ CMnd
6132submmnd 18452 . . . . . 6 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
6253, 61mp1i 13 . . . . 5 (𝜑 → (𝑀s+) ∈ Mnd)
6332subcmn 19438 . . . . 5 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
6460, 62, 63sylancr 587 . . . 4 (𝜑 → (𝑀s+) ∈ CMnd)
65 reex 10962 . . . . . . . 8 ℝ ∈ V
6665, 29ssexi 5246 . . . . . . 7 + ∈ V
67 cnfldmul 20603 . . . . . . . . 9 · = (.r‘ℂfld)
681, 67mgpplusg 19724 . . . . . . . 8 · = (+g𝑀)
6932, 68ressplusg 17000 . . . . . . 7 (ℝ+ ∈ V → · = (+g‘(𝑀s+)))
7066, 69ax-mp 5 . . . . . 6 · = (+g‘(𝑀s+))
71 eqid 2738 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
7271rpmsubg 20662 . . . . . . 7 + ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
731oveq1i 7285 . . . . . . . . 9 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
74 cnex 10952 . . . . . . . . . . 11 ℂ ∈ V
75 difss 4066 . . . . . . . . . . 11 (ℂ ∖ {0}) ⊆ ℂ
7674, 75ssexi 5246 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ V
77 rpcndif0 12749 . . . . . . . . . . 11 (𝑤 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0}))
7877ssriv 3925 . . . . . . . . . 10 + ⊆ (ℂ ∖ {0})
79 ressabs 16959 . . . . . . . . . 10 (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+))
8076, 78, 79mp2an 689 . . . . . . . . 9 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+)
8173, 80eqtr4i 2769 . . . . . . . 8 (𝑀s+) = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+)
8281subggrp 18758 . . . . . . 7 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → (𝑀s+) ∈ Grp)
8372, 82mp1i 13 . . . . . 6 (𝜑 → (𝑀s+) ∈ Grp)
84 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ+) → 𝑘 ∈ ℝ+)
8515adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ+) → (1 / (♯‘𝐴)) ∈ ℝ)
8684, 85rpcxpcld 25887 . . . . . . 7 ((𝜑𝑘 ∈ ℝ+) → (𝑘𝑐(1 / (♯‘𝐴))) ∈ ℝ+)
87 eqid 2738 . . . . . . 7 (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))
8886, 87fmptd 6988 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))):ℝ+⟶ℝ+)
89 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℝ+)
9089rprege0d 12779 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
91 simprr 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
9291rprege0d 12779 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
9316adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (1 / (♯‘𝐴)) ∈ ℂ)
94 mulcxp 25840 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 / (♯‘𝐴)) ∈ ℂ) → ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
9590, 92, 93, 94syl3anc 1370 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
96 rpmulcl 12753 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+)
9796adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) ∈ ℝ+)
98 oveq1 7282 . . . . . . . . 9 (𝑘 = (𝑥 · 𝑦) → (𝑘𝑐(1 / (♯‘𝐴))) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
99 ovex 7308 . . . . . . . . 9 (𝑘𝑐(1 / (♯‘𝐴))) ∈ V
10098, 87, 99fvmpt3i 6880 . . . . . . . 8 ((𝑥 · 𝑦) ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
10197, 100syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
102 oveq1 7282 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑘𝑐(1 / (♯‘𝐴))) = (𝑥𝑐(1 / (♯‘𝐴))))
103102, 87, 99fvmpt3i 6880 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) = (𝑥𝑐(1 / (♯‘𝐴))))
10489, 103syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) = (𝑥𝑐(1 / (♯‘𝐴))))
105 oveq1 7282 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑘𝑐(1 / (♯‘𝐴))) = (𝑦𝑐(1 / (♯‘𝐴))))
106105, 87, 99fvmpt3i 6880 . . . . . . . . 9 (𝑦 ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦) = (𝑦𝑐(1 / (♯‘𝐴))))
10791, 106syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦) = (𝑦𝑐(1 / (♯‘𝐴))))
108104, 107oveq12d 7293 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦)) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
10995, 101, 1083eqtr4d 2788 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = (((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦)))
11036, 36, 70, 70, 83, 83, 88, 109isghmd 18843 . . . . 5 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) GrpHom (𝑀s+)))
111 ghmmhm 18844 . . . . 5 ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) GrpHom (𝑀s+)) → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) MndHom (𝑀s+)))
112110, 111syl 17 . . . 4 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) MndHom (𝑀s+)))
113 1red 10976 . . . . 5 (𝜑 → 1 ∈ ℝ)
1144, 2, 113fdmfifsupp 9138 . . . 4 (𝜑𝐹 finSupp 1)
11536, 57, 64, 62, 2, 112, 4, 114gsummhm 19539 . . 3 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)))
11653a1i 11 . . . . 5 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
1174ffvelrnda 6961 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
11815adantr 481 . . . . . . 7 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ)
119117, 118rpcxpcld 25887 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))) ∈ ℝ+)
120 eqid 2738 . . . . . 6 (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))
121119, 120fmptd 6988 . . . . 5 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))):𝐴⟶ℝ+)
1222, 116, 121, 32gsumsubm 18473 . . . 4 (𝜑 → (𝑀 Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))) = ((𝑀s+) Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
1239adantr 481 . . . . . 6 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ+)
1244feqmptd 6837 . . . . . 6 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
1252, 117, 123, 124, 13offval2 7553 . . . . 5 (𝜑 → (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))})) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))))
126125oveq2d 7291 . . . 4 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = (𝑀 Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
127102cbvmptv 5187 . . . . . . 7 (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(1 / (♯‘𝐴))))
128127a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(1 / (♯‘𝐴)))))
129 oveq1 7282 . . . . . 6 (𝑥 = (𝐹𝑘) → (𝑥𝑐(1 / (♯‘𝐴))) = ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))
130117, 124, 128, 129fmptco 7001 . . . . 5 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))))
131130oveq2d 7291 . . . 4 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = ((𝑀s+) Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
132122, 126, 1313eqtr4rd 2789 . . 3 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))))
13336, 57, 64, 2, 4, 114gsumcl 19516 . . . . 5 (𝜑 → ((𝑀s+) Σg 𝐹) ∈ ℝ+)
134 oveq1 7282 . . . . . 6 (𝑘 = ((𝑀s+) Σg 𝐹) → (𝑘𝑐(1 / (♯‘𝐴))) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
135134, 87, 99fvmpt3i 6880 . . . . 5 (((𝑀s+) Σg 𝐹) ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
136133, 135syl 17 . . . 4 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
1372, 116, 4, 32gsumsubm 18473 . . . . 5 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀s+) Σg 𝐹))
138137oveq1d 7290 . . . 4 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
139136, 138eqtr4d 2781 . . 3 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
140115, 132, 1393eqtr3d 2786 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
141117rpcnd 12774 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1422, 141fsumcl 15445 . . . . . 6 (𝜑 → Σ𝑘𝐴 (𝐹𝑘) ∈ ℂ)
143142, 23, 24divrecd 11754 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)) = (Σ𝑘𝐴 (𝐹𝑘) · (1 / (♯‘𝐴))))
1442, 16, 141fsummulc1 15497 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐹𝑘) · (1 / (♯‘𝐴))) = Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))))
145143, 144eqtr2d 2779 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))) = (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)))
14616adantr 481 . . . . . 6 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℂ)
147141, 146mulcld 10995 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) · (1 / (♯‘𝐴))) ∈ ℂ)
1482, 147gsumfsum 20665 . . . 4 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))) = Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))))
1492, 141gsumfsum 20665 . . . . 5 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) = Σ𝑘𝐴 (𝐹𝑘))
150149oveq1d 7290 . . . 4 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)) = (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)))
151145, 148, 1503eqtr4d 2788 . . 3 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))) = ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)))
1522, 117, 146, 124, 13offval2 7553 . . . 4 (𝜑 → (𝐹f · (𝐴 × {(1 / (♯‘𝐴))})) = (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴)))))
153152oveq2d 7291 . . 3 (𝜑 → (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))) = (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))))
154124oveq2d 7291 . . . 4 (𝜑 → (ℂfld Σg 𝐹) = (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))))
155154oveq1d 7290 . . 3 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)))
156151, 153, 1553eqtr4d 2788 . 2 (𝜑 → (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
15728, 140, 1563brtr3d 5105 1 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  cle 11010   / cdiv 11632  cn 11973  +crp 12730  chash 14044  Σcsu 15397  Basecbs 16912  s cress 16941  +gcplusg 16962  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385   MndHom cmhm 18428  SubMndcsubmnd 18429  Grpcgrp 18577  SubGrpcsubg 18749   GrpHom cghm 18831  CMndccmn 19386  mulGrpcmgp 19720  Ringcrg 19783  CRingccrg 19784  fldccnfld 20597  𝑐ccxp 25711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-subrg 20022  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-refld 20810  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator