Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmlemALT Structured version   Visualization version   GIF version

Theorem amgmlemALT 46178
Description: Alternate proof of amgmlem 25872 using amgmwlem 46177. (Contributed by Kunhao Zheng, 20-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
amgmlemALT.0 𝑀 = (mulGrp‘ℂfld)
amgmlemALT.1 (𝜑𝐴 ∈ Fin)
amgmlemALT.2 (𝜑𝐴 ≠ ∅)
amgmlemALT.3 (𝜑𝐹:𝐴⟶ℝ+)
Assertion
Ref Expression
amgmlemALT (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgmlemALT
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmlemALT.0 . . 3 𝑀 = (mulGrp‘ℂfld)
2 amgmlemALT.1 . . 3 (𝜑𝐴 ∈ Fin)
3 amgmlemALT.2 . . 3 (𝜑𝐴 ≠ ∅)
4 amgmlemALT.3 . . 3 (𝜑𝐹:𝐴⟶ℝ+)
5 hashnncl 13933 . . . . . . . 8 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
62, 5syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
73, 6mpbird 260 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℕ)
87nnrpd 12626 . . . . 5 (𝜑 → (♯‘𝐴) ∈ ℝ+)
98rpreccld 12638 . . . 4 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ+)
10 fconst6g 6608 . . . 4 ((1 / (♯‘𝐴)) ∈ ℝ+ → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+)
119, 10syl 17 . . 3 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+)
12 fconstmpt 5611 . . . . . 6 (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴)))
1312a1i 11 . . . . 5 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
1413oveq2d 7229 . . . 4 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))))
157nnrecred 11881 . . . . . 6 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ)
1615recnd 10861 . . . . 5 (𝜑 → (1 / (♯‘𝐴)) ∈ ℂ)
17 simpl 486 . . . . . 6 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → 𝐴 ∈ Fin)
18 simplr 769 . . . . . 6 (((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) ∧ 𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℂ)
1917, 18gsumfsum 20430 . . . . 5 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘𝐴 (1 / (♯‘𝐴)))
202, 16, 19syl2anc 587 . . . 4 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘𝐴 (1 / (♯‘𝐴)))
21 fsumconst 15354 . . . . . 6 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → Σ𝑘𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
222, 16, 21syl2anc 587 . . . . 5 (𝜑 → Σ𝑘𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
237nncnd 11846 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℂ)
247nnne0d 11880 . . . . . 6 (𝜑 → (♯‘𝐴) ≠ 0)
2523, 24recidd 11603 . . . . 5 (𝜑 → ((♯‘𝐴) · (1 / (♯‘𝐴))) = 1)
2622, 25eqtrd 2777 . . . 4 (𝜑 → Σ𝑘𝐴 (1 / (♯‘𝐴)) = 1)
2714, 20, 263eqtrd 2781 . . 3 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1)
281, 2, 3, 4, 11, 27amgmwlem 46177 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) ≤ (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))))
29 rpssre 12593 . . . . . 6 + ⊆ ℝ
30 ax-resscn 10786 . . . . . 6 ℝ ⊆ ℂ
3129, 30sstri 3910 . . . . 5 + ⊆ ℂ
32 eqid 2737 . . . . . 6 (𝑀s+) = (𝑀s+)
33 cnfldbas 20367 . . . . . . 7 ℂ = (Base‘ℂfld)
341, 33mgpbas 19510 . . . . . 6 ℂ = (Base‘𝑀)
3532, 34ressbas2 16791 . . . . 5 (ℝ+ ⊆ ℂ → ℝ+ = (Base‘(𝑀s+)))
3631, 35ax-mp 5 . . . 4 + = (Base‘(𝑀s+))
37 cnfld1 20388 . . . . . 6 1 = (1r‘ℂfld)
381, 37ringidval 19518 . . . . 5 1 = (0g𝑀)
391oveq1i 7223 . . . . . . . . . 10 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
4039rpmsubg 20427 . . . . . . . . 9 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
41 subgsubm 18565 . . . . . . . . 9 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
4240, 41ax-mp 5 . . . . . . . 8 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
43 cnring 20385 . . . . . . . . . 10 fld ∈ Ring
44 cnfld0 20387 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
45 cndrng 20392 . . . . . . . . . . . 12 fld ∈ DivRing
4633, 44, 45drngui 19773 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
4746, 1unitsubm 19688 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
4843, 47ax-mp 5 . . . . . . . . 9 (ℂ ∖ {0}) ∈ (SubMnd‘𝑀)
49 eqid 2737 . . . . . . . . . 10 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
5049subsubm 18243 . . . . . . . . 9 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
5148, 50ax-mp 5 . . . . . . . 8 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
5242, 51mpbi 233 . . . . . . 7 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
5352simpli 487 . . . . . 6 + ∈ (SubMnd‘𝑀)
54 eqid 2737 . . . . . . 7 (0g𝑀) = (0g𝑀)
5532, 54subm0 18242 . . . . . 6 (ℝ+ ∈ (SubMnd‘𝑀) → (0g𝑀) = (0g‘(𝑀s+)))
5653, 55ax-mp 5 . . . . 5 (0g𝑀) = (0g‘(𝑀s+))
5738, 56eqtri 2765 . . . 4 1 = (0g‘(𝑀s+))
58 cncrng 20384 . . . . . 6 fld ∈ CRing
591crngmgp 19570 . . . . . 6 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
6058, 59ax-mp 5 . . . . 5 𝑀 ∈ CMnd
6132submmnd 18240 . . . . . 6 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
6253, 61mp1i 13 . . . . 5 (𝜑 → (𝑀s+) ∈ Mnd)
6332subcmn 19222 . . . . 5 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
6460, 62, 63sylancr 590 . . . 4 (𝜑 → (𝑀s+) ∈ CMnd)
65 reex 10820 . . . . . . . 8 ℝ ∈ V
6665, 29ssexi 5215 . . . . . . 7 + ∈ V
67 cnfldmul 20369 . . . . . . . . 9 · = (.r‘ℂfld)
681, 67mgpplusg 19508 . . . . . . . 8 · = (+g𝑀)
6932, 68ressplusg 16834 . . . . . . 7 (ℝ+ ∈ V → · = (+g‘(𝑀s+)))
7066, 69ax-mp 5 . . . . . 6 · = (+g‘(𝑀s+))
71 eqid 2737 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
7271rpmsubg 20427 . . . . . . 7 + ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
731oveq1i 7223 . . . . . . . . 9 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
74 cnex 10810 . . . . . . . . . . 11 ℂ ∈ V
75 difss 4046 . . . . . . . . . . 11 (ℂ ∖ {0}) ⊆ ℂ
7674, 75ssexi 5215 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ V
77 rpcndif0 12605 . . . . . . . . . . 11 (𝑤 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0}))
7877ssriv 3905 . . . . . . . . . 10 + ⊆ (ℂ ∖ {0})
79 ressabs 16800 . . . . . . . . . 10 (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+))
8076, 78, 79mp2an 692 . . . . . . . . 9 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+)
8173, 80eqtr4i 2768 . . . . . . . 8 (𝑀s+) = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+)
8281subggrp 18546 . . . . . . 7 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → (𝑀s+) ∈ Grp)
8372, 82mp1i 13 . . . . . 6 (𝜑 → (𝑀s+) ∈ Grp)
84 simpr 488 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ+) → 𝑘 ∈ ℝ+)
8515adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ+) → (1 / (♯‘𝐴)) ∈ ℝ)
8684, 85rpcxpcld 25620 . . . . . . 7 ((𝜑𝑘 ∈ ℝ+) → (𝑘𝑐(1 / (♯‘𝐴))) ∈ ℝ+)
87 eqid 2737 . . . . . . 7 (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))
8886, 87fmptd 6931 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))):ℝ+⟶ℝ+)
89 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℝ+)
9089rprege0d 12635 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
91 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
9291rprege0d 12635 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
9316adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (1 / (♯‘𝐴)) ∈ ℂ)
94 mulcxp 25573 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 / (♯‘𝐴)) ∈ ℂ) → ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
9590, 92, 93, 94syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
96 rpmulcl 12609 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+)
9796adantl 485 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) ∈ ℝ+)
98 oveq1 7220 . . . . . . . . 9 (𝑘 = (𝑥 · 𝑦) → (𝑘𝑐(1 / (♯‘𝐴))) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
99 ovex 7246 . . . . . . . . 9 (𝑘𝑐(1 / (♯‘𝐴))) ∈ V
10098, 87, 99fvmpt3i 6823 . . . . . . . 8 ((𝑥 · 𝑦) ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
10197, 100syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
102 oveq1 7220 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑘𝑐(1 / (♯‘𝐴))) = (𝑥𝑐(1 / (♯‘𝐴))))
103102, 87, 99fvmpt3i 6823 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) = (𝑥𝑐(1 / (♯‘𝐴))))
10489, 103syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) = (𝑥𝑐(1 / (♯‘𝐴))))
105 oveq1 7220 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑘𝑐(1 / (♯‘𝐴))) = (𝑦𝑐(1 / (♯‘𝐴))))
106105, 87, 99fvmpt3i 6823 . . . . . . . . 9 (𝑦 ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦) = (𝑦𝑐(1 / (♯‘𝐴))))
10791, 106syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦) = (𝑦𝑐(1 / (♯‘𝐴))))
108104, 107oveq12d 7231 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦)) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
10995, 101, 1083eqtr4d 2787 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = (((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦)))
11036, 36, 70, 70, 83, 83, 88, 109isghmd 18631 . . . . 5 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) GrpHom (𝑀s+)))
111 ghmmhm 18632 . . . . 5 ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) GrpHom (𝑀s+)) → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) MndHom (𝑀s+)))
112110, 111syl 17 . . . 4 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) MndHom (𝑀s+)))
113 1red 10834 . . . . 5 (𝜑 → 1 ∈ ℝ)
1144, 2, 113fdmfifsupp 8995 . . . 4 (𝜑𝐹 finSupp 1)
11536, 57, 64, 62, 2, 112, 4, 114gsummhm 19323 . . 3 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)))
11653a1i 11 . . . . 5 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
1174ffvelrnda 6904 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
11815adantr 484 . . . . . . 7 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ)
119117, 118rpcxpcld 25620 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))) ∈ ℝ+)
120 eqid 2737 . . . . . 6 (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))
121119, 120fmptd 6931 . . . . 5 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))):𝐴⟶ℝ+)
1222, 116, 121, 32gsumsubm 18261 . . . 4 (𝜑 → (𝑀 Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))) = ((𝑀s+) Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
1239adantr 484 . . . . . 6 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ+)
1244feqmptd 6780 . . . . . 6 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
1252, 117, 123, 124, 13offval2 7488 . . . . 5 (𝜑 → (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))})) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))))
126125oveq2d 7229 . . . 4 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = (𝑀 Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
127102cbvmptv 5158 . . . . . . 7 (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(1 / (♯‘𝐴))))
128127a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(1 / (♯‘𝐴)))))
129 oveq1 7220 . . . . . 6 (𝑥 = (𝐹𝑘) → (𝑥𝑐(1 / (♯‘𝐴))) = ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))
130117, 124, 128, 129fmptco 6944 . . . . 5 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))))
131130oveq2d 7229 . . . 4 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = ((𝑀s+) Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
132122, 126, 1313eqtr4rd 2788 . . 3 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))))
13336, 57, 64, 2, 4, 114gsumcl 19300 . . . . 5 (𝜑 → ((𝑀s+) Σg 𝐹) ∈ ℝ+)
134 oveq1 7220 . . . . . 6 (𝑘 = ((𝑀s+) Σg 𝐹) → (𝑘𝑐(1 / (♯‘𝐴))) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
135134, 87, 99fvmpt3i 6823 . . . . 5 (((𝑀s+) Σg 𝐹) ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
136133, 135syl 17 . . . 4 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
1372, 116, 4, 32gsumsubm 18261 . . . . 5 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀s+) Σg 𝐹))
138137oveq1d 7228 . . . 4 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
139136, 138eqtr4d 2780 . . 3 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
140115, 132, 1393eqtr3d 2785 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
141117rpcnd 12630 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1422, 141fsumcl 15297 . . . . . 6 (𝜑 → Σ𝑘𝐴 (𝐹𝑘) ∈ ℂ)
143142, 23, 24divrecd 11611 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)) = (Σ𝑘𝐴 (𝐹𝑘) · (1 / (♯‘𝐴))))
1442, 16, 141fsummulc1 15349 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐹𝑘) · (1 / (♯‘𝐴))) = Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))))
145143, 144eqtr2d 2778 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))) = (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)))
14616adantr 484 . . . . . 6 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℂ)
147141, 146mulcld 10853 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) · (1 / (♯‘𝐴))) ∈ ℂ)
1482, 147gsumfsum 20430 . . . 4 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))) = Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))))
1492, 141gsumfsum 20430 . . . . 5 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) = Σ𝑘𝐴 (𝐹𝑘))
150149oveq1d 7228 . . . 4 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)) = (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)))
151145, 148, 1503eqtr4d 2787 . . 3 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))) = ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)))
1522, 117, 146, 124, 13offval2 7488 . . . 4 (𝜑 → (𝐹f · (𝐴 × {(1 / (♯‘𝐴))})) = (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴)))))
153152oveq2d 7229 . . 3 (𝜑 → (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))) = (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))))
154124oveq2d 7229 . . . 4 (𝜑 → (ℂfld Σg 𝐹) = (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))))
155154oveq1d 7228 . . 3 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)))
156151, 153, 1553eqtr4d 2787 . 2 (𝜑 → (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
15728, 140, 1563brtr3d 5084 1 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  Vcvv 3408  cdif 3863  wss 3866  c0 4237  {csn 4541   class class class wbr 5053  cmpt 5135   × cxp 5549  ccom 5555  wf 6376  cfv 6380  (class class class)co 7213  f cof 7467  Fincfn 8626  cc 10727  cr 10728  0cc0 10729  1c1 10730   · cmul 10734  cle 10868   / cdiv 11489  cn 11830  +crp 12586  chash 13896  Σcsu 15249  Basecbs 16760  s cress 16784  +gcplusg 16802  0gc0g 16944   Σg cgsu 16945  Mndcmnd 18173   MndHom cmhm 18216  SubMndcsubmnd 18217  Grpcgrp 18365  SubGrpcsubg 18537   GrpHom cghm 18619  CMndccmn 19170  mulGrpcmgp 19504  Ringcrg 19562  CRingccrg 19563  fldccnfld 20363  𝑐ccxp 25444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-mulg 18489  df-subg 18540  df-ghm 18620  df-gim 18663  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-drng 19769  df-subrg 19798  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-refld 20567  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-cxp 25446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator