Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmlemALT Structured version   Visualization version   GIF version

Theorem amgmlemALT 44911
Description: Alternate proof of amgmlem 25569 using amgmwlem 44910. (Contributed by Kunhao Zheng, 20-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
amgmlemALT.0 𝑀 = (mulGrp‘ℂfld)
amgmlemALT.1 (𝜑𝐴 ∈ Fin)
amgmlemALT.2 (𝜑𝐴 ≠ ∅)
amgmlemALT.3 (𝜑𝐹:𝐴⟶ℝ+)
Assertion
Ref Expression
amgmlemALT (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgmlemALT
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmlemALT.0 . . 3 𝑀 = (mulGrp‘ℂfld)
2 amgmlemALT.1 . . 3 (𝜑𝐴 ∈ Fin)
3 amgmlemALT.2 . . 3 (𝜑𝐴 ≠ ∅)
4 amgmlemALT.3 . . 3 (𝜑𝐹:𝐴⟶ℝ+)
5 hashnncl 13730 . . . . . . . 8 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
62, 5syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
73, 6mpbird 259 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℕ)
87nnrpd 12432 . . . . 5 (𝜑 → (♯‘𝐴) ∈ ℝ+)
98rpreccld 12444 . . . 4 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ+)
10 fconst6g 6570 . . . 4 ((1 / (♯‘𝐴)) ∈ ℝ+ → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+)
119, 10syl 17 . . 3 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+)
12 fconstmpt 5616 . . . . . 6 (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴)))
1312a1i 11 . . . . 5 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
1413oveq2d 7174 . . . 4 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))))
157nnrecred 11691 . . . . . 6 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ)
1615recnd 10671 . . . . 5 (𝜑 → (1 / (♯‘𝐴)) ∈ ℂ)
17 simpl 485 . . . . . 6 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → 𝐴 ∈ Fin)
18 simplr 767 . . . . . 6 (((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) ∧ 𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℂ)
1917, 18gsumfsum 20614 . . . . 5 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘𝐴 (1 / (♯‘𝐴)))
202, 16, 19syl2anc 586 . . . 4 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘𝐴 (1 / (♯‘𝐴)))
21 fsumconst 15147 . . . . . 6 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → Σ𝑘𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
222, 16, 21syl2anc 586 . . . . 5 (𝜑 → Σ𝑘𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
237nncnd 11656 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℂ)
247nnne0d 11690 . . . . . 6 (𝜑 → (♯‘𝐴) ≠ 0)
2523, 24recidd 11413 . . . . 5 (𝜑 → ((♯‘𝐴) · (1 / (♯‘𝐴))) = 1)
2622, 25eqtrd 2858 . . . 4 (𝜑 → Σ𝑘𝐴 (1 / (♯‘𝐴)) = 1)
2714, 20, 263eqtrd 2862 . . 3 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1)
281, 2, 3, 4, 11, 27amgmwlem 44910 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) ≤ (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))))
29 rpssre 12399 . . . . . 6 + ⊆ ℝ
30 ax-resscn 10596 . . . . . 6 ℝ ⊆ ℂ
3129, 30sstri 3978 . . . . 5 + ⊆ ℂ
32 eqid 2823 . . . . . 6 (𝑀s+) = (𝑀s+)
33 cnfldbas 20551 . . . . . . 7 ℂ = (Base‘ℂfld)
341, 33mgpbas 19247 . . . . . 6 ℂ = (Base‘𝑀)
3532, 34ressbas2 16557 . . . . 5 (ℝ+ ⊆ ℂ → ℝ+ = (Base‘(𝑀s+)))
3631, 35ax-mp 5 . . . 4 + = (Base‘(𝑀s+))
37 cnfld1 20572 . . . . . 6 1 = (1r‘ℂfld)
381, 37ringidval 19255 . . . . 5 1 = (0g𝑀)
391oveq1i 7168 . . . . . . . . . 10 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
4039rpmsubg 20611 . . . . . . . . 9 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
41 subgsubm 18303 . . . . . . . . 9 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
4240, 41ax-mp 5 . . . . . . . 8 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
43 cnring 20569 . . . . . . . . . 10 fld ∈ Ring
44 cnfld0 20571 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
45 cndrng 20576 . . . . . . . . . . . 12 fld ∈ DivRing
4633, 44, 45drngui 19510 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
4746, 1unitsubm 19422 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
4843, 47ax-mp 5 . . . . . . . . 9 (ℂ ∖ {0}) ∈ (SubMnd‘𝑀)
49 eqid 2823 . . . . . . . . . 10 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
5049subsubm 17983 . . . . . . . . 9 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
5148, 50ax-mp 5 . . . . . . . 8 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
5242, 51mpbi 232 . . . . . . 7 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
5352simpli 486 . . . . . 6 + ∈ (SubMnd‘𝑀)
54 eqid 2823 . . . . . . 7 (0g𝑀) = (0g𝑀)
5532, 54subm0 17982 . . . . . 6 (ℝ+ ∈ (SubMnd‘𝑀) → (0g𝑀) = (0g‘(𝑀s+)))
5653, 55ax-mp 5 . . . . 5 (0g𝑀) = (0g‘(𝑀s+))
5738, 56eqtri 2846 . . . 4 1 = (0g‘(𝑀s+))
58 cncrng 20568 . . . . . 6 fld ∈ CRing
591crngmgp 19307 . . . . . 6 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
6058, 59ax-mp 5 . . . . 5 𝑀 ∈ CMnd
6132submmnd 17980 . . . . . 6 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
6253, 61mp1i 13 . . . . 5 (𝜑 → (𝑀s+) ∈ Mnd)
6332subcmn 18959 . . . . 5 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
6460, 62, 63sylancr 589 . . . 4 (𝜑 → (𝑀s+) ∈ CMnd)
65 reex 10630 . . . . . . . 8 ℝ ∈ V
6665, 29ssexi 5228 . . . . . . 7 + ∈ V
67 cnfldmul 20553 . . . . . . . . 9 · = (.r‘ℂfld)
681, 67mgpplusg 19245 . . . . . . . 8 · = (+g𝑀)
6932, 68ressplusg 16614 . . . . . . 7 (ℝ+ ∈ V → · = (+g‘(𝑀s+)))
7066, 69ax-mp 5 . . . . . 6 · = (+g‘(𝑀s+))
71 eqid 2823 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
7271rpmsubg 20611 . . . . . . 7 + ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
731oveq1i 7168 . . . . . . . . 9 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
74 cnex 10620 . . . . . . . . . . 11 ℂ ∈ V
75 difss 4110 . . . . . . . . . . 11 (ℂ ∖ {0}) ⊆ ℂ
7674, 75ssexi 5228 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ V
77 rpcndif0 12411 . . . . . . . . . . 11 (𝑤 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0}))
7877ssriv 3973 . . . . . . . . . 10 + ⊆ (ℂ ∖ {0})
79 ressabs 16565 . . . . . . . . . 10 (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+))
8076, 78, 79mp2an 690 . . . . . . . . 9 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+)
8173, 80eqtr4i 2849 . . . . . . . 8 (𝑀s+) = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+)
8281subggrp 18284 . . . . . . 7 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → (𝑀s+) ∈ Grp)
8372, 82mp1i 13 . . . . . 6 (𝜑 → (𝑀s+) ∈ Grp)
84 simpr 487 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ+) → 𝑘 ∈ ℝ+)
8515adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ+) → (1 / (♯‘𝐴)) ∈ ℝ)
8684, 85rpcxpcld 25317 . . . . . . 7 ((𝜑𝑘 ∈ ℝ+) → (𝑘𝑐(1 / (♯‘𝐴))) ∈ ℝ+)
87 eqid 2823 . . . . . . 7 (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))
8886, 87fmptd 6880 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))):ℝ+⟶ℝ+)
89 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℝ+)
9089rprege0d 12441 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
91 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
9291rprege0d 12441 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
9316adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (1 / (♯‘𝐴)) ∈ ℂ)
94 mulcxp 25270 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 / (♯‘𝐴)) ∈ ℂ) → ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
9590, 92, 93, 94syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
96 rpmulcl 12415 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+)
9796adantl 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) ∈ ℝ+)
98 oveq1 7165 . . . . . . . . 9 (𝑘 = (𝑥 · 𝑦) → (𝑘𝑐(1 / (♯‘𝐴))) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
99 ovex 7191 . . . . . . . . 9 (𝑘𝑐(1 / (♯‘𝐴))) ∈ V
10098, 87, 99fvmpt3i 6775 . . . . . . . 8 ((𝑥 · 𝑦) ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
10197, 100syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
102 oveq1 7165 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑘𝑐(1 / (♯‘𝐴))) = (𝑥𝑐(1 / (♯‘𝐴))))
103102, 87, 99fvmpt3i 6775 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) = (𝑥𝑐(1 / (♯‘𝐴))))
10489, 103syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) = (𝑥𝑐(1 / (♯‘𝐴))))
105 oveq1 7165 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑘𝑐(1 / (♯‘𝐴))) = (𝑦𝑐(1 / (♯‘𝐴))))
106105, 87, 99fvmpt3i 6775 . . . . . . . . 9 (𝑦 ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦) = (𝑦𝑐(1 / (♯‘𝐴))))
10791, 106syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦) = (𝑦𝑐(1 / (♯‘𝐴))))
108104, 107oveq12d 7176 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦)) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
10995, 101, 1083eqtr4d 2868 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = (((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦)))
11036, 36, 70, 70, 83, 83, 88, 109isghmd 18369 . . . . 5 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) GrpHom (𝑀s+)))
111 ghmmhm 18370 . . . . 5 ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) GrpHom (𝑀s+)) → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) MndHom (𝑀s+)))
112110, 111syl 17 . . . 4 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) MndHom (𝑀s+)))
113 1red 10644 . . . . 5 (𝜑 → 1 ∈ ℝ)
1144, 2, 113fdmfifsupp 8845 . . . 4 (𝜑𝐹 finSupp 1)
11536, 57, 64, 62, 2, 112, 4, 114gsummhm 19060 . . 3 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)))
11653a1i 11 . . . . 5 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
1174ffvelrnda 6853 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
11815adantr 483 . . . . . . 7 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ)
119117, 118rpcxpcld 25317 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))) ∈ ℝ+)
120 eqid 2823 . . . . . 6 (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))
121119, 120fmptd 6880 . . . . 5 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))):𝐴⟶ℝ+)
1222, 116, 121, 32gsumsubm 18001 . . . 4 (𝜑 → (𝑀 Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))) = ((𝑀s+) Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
1239adantr 483 . . . . . 6 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ+)
1244feqmptd 6735 . . . . . 6 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
1252, 117, 123, 124, 13offval2 7428 . . . . 5 (𝜑 → (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))})) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))))
126125oveq2d 7174 . . . 4 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = (𝑀 Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
127102cbvmptv 5171 . . . . . . 7 (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(1 / (♯‘𝐴))))
128127a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(1 / (♯‘𝐴)))))
129 oveq1 7165 . . . . . 6 (𝑥 = (𝐹𝑘) → (𝑥𝑐(1 / (♯‘𝐴))) = ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))
130117, 124, 128, 129fmptco 6893 . . . . 5 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))))
131130oveq2d 7174 . . . 4 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = ((𝑀s+) Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
132122, 126, 1313eqtr4rd 2869 . . 3 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))))
13336, 57, 64, 2, 4, 114gsumcl 19037 . . . . 5 (𝜑 → ((𝑀s+) Σg 𝐹) ∈ ℝ+)
134 oveq1 7165 . . . . . 6 (𝑘 = ((𝑀s+) Σg 𝐹) → (𝑘𝑐(1 / (♯‘𝐴))) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
135134, 87, 99fvmpt3i 6775 . . . . 5 (((𝑀s+) Σg 𝐹) ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
136133, 135syl 17 . . . 4 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
1372, 116, 4, 32gsumsubm 18001 . . . . 5 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀s+) Σg 𝐹))
138137oveq1d 7173 . . . 4 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
139136, 138eqtr4d 2861 . . 3 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
140115, 132, 1393eqtr3d 2866 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
141117rpcnd 12436 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1422, 141fsumcl 15092 . . . . . 6 (𝜑 → Σ𝑘𝐴 (𝐹𝑘) ∈ ℂ)
143142, 23, 24divrecd 11421 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)) = (Σ𝑘𝐴 (𝐹𝑘) · (1 / (♯‘𝐴))))
1442, 16, 141fsummulc1 15142 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐹𝑘) · (1 / (♯‘𝐴))) = Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))))
145143, 144eqtr2d 2859 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))) = (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)))
14616adantr 483 . . . . . 6 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℂ)
147141, 146mulcld 10663 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) · (1 / (♯‘𝐴))) ∈ ℂ)
1482, 147gsumfsum 20614 . . . 4 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))) = Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))))
1492, 141gsumfsum 20614 . . . . 5 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) = Σ𝑘𝐴 (𝐹𝑘))
150149oveq1d 7173 . . . 4 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)) = (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)))
151145, 148, 1503eqtr4d 2868 . . 3 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))) = ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)))
1522, 117, 146, 124, 13offval2 7428 . . . 4 (𝜑 → (𝐹f · (𝐴 × {(1 / (♯‘𝐴))})) = (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴)))))
153152oveq2d 7174 . . 3 (𝜑 → (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))) = (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))))
154124oveq2d 7174 . . . 4 (𝜑 → (ℂfld Σg 𝐹) = (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))))
155154oveq1d 7173 . . 3 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)))
156151, 153, 1553eqtr4d 2868 . 2 (𝜑 → (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
15728, 140, 1563brtr3d 5099 1 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  wss 3938  c0 4293  {csn 4569   class class class wbr 5068  cmpt 5148   × cxp 5555  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544  cle 10678   / cdiv 11299  cn 11640  +crp 12392  chash 13693  Σcsu 15044  Basecbs 16485  s cress 16486  +gcplusg 16567  0gc0g 16715   Σg cgsu 16716  Mndcmnd 17913   MndHom cmhm 17956  SubMndcsubmnd 17957  Grpcgrp 18105  SubGrpcsubg 18275   GrpHom cghm 18357  CMndccmn 18908  mulGrpcmgp 19241  Ringcrg 19299  CRingccrg 19300  fldccnfld 20547  𝑐ccxp 25141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-mulg 18227  df-subg 18278  df-ghm 18358  df-gim 18401  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-subrg 19535  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-refld 20751  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-cxp 25143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator