Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmlemALT Structured version   Visualization version   GIF version

Theorem amgmlemALT 49765
Description: Alternate proof of amgmlem 26876 using amgmwlem 49764. (Contributed by Kunhao Zheng, 20-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
amgmlemALT.0 𝑀 = (mulGrp‘ℂfld)
amgmlemALT.1 (𝜑𝐴 ∈ Fin)
amgmlemALT.2 (𝜑𝐴 ≠ ∅)
amgmlemALT.3 (𝜑𝐹:𝐴⟶ℝ+)
Assertion
Ref Expression
amgmlemALT (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgmlemALT
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmlemALT.0 . . 3 𝑀 = (mulGrp‘ℂfld)
2 amgmlemALT.1 . . 3 (𝜑𝐴 ∈ Fin)
3 amgmlemALT.2 . . 3 (𝜑𝐴 ≠ ∅)
4 amgmlemALT.3 . . 3 (𝜑𝐹:𝐴⟶ℝ+)
5 hashnncl 14307 . . . . . . . 8 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
62, 5syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
73, 6mpbird 257 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℕ)
87nnrpd 12969 . . . . 5 (𝜑 → (♯‘𝐴) ∈ ℝ+)
98rpreccld 12981 . . . 4 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ+)
10 fconst6g 6731 . . . 4 ((1 / (♯‘𝐴)) ∈ ℝ+ → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+)
119, 10syl 17 . . 3 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+)
12 fconstmpt 5693 . . . . . 6 (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴)))
1312a1i 11 . . . . 5 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
1413oveq2d 7385 . . . 4 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))))
157nnrecred 12213 . . . . . 6 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ)
1615recnd 11178 . . . . 5 (𝜑 → (1 / (♯‘𝐴)) ∈ ℂ)
17 simpl 482 . . . . . 6 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → 𝐴 ∈ Fin)
18 simplr 768 . . . . . 6 (((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) ∧ 𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℂ)
1917, 18gsumfsum 21327 . . . . 5 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘𝐴 (1 / (♯‘𝐴)))
202, 16, 19syl2anc 584 . . . 4 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘𝐴 (1 / (♯‘𝐴)))
21 fsumconst 15732 . . . . . 6 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → Σ𝑘𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
222, 16, 21syl2anc 584 . . . . 5 (𝜑 → Σ𝑘𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
237nncnd 12178 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℂ)
247nnne0d 12212 . . . . . 6 (𝜑 → (♯‘𝐴) ≠ 0)
2523, 24recidd 11929 . . . . 5 (𝜑 → ((♯‘𝐴) · (1 / (♯‘𝐴))) = 1)
2622, 25eqtrd 2764 . . . 4 (𝜑 → Σ𝑘𝐴 (1 / (♯‘𝐴)) = 1)
2714, 20, 263eqtrd 2768 . . 3 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1)
281, 2, 3, 4, 11, 27amgmwlem 49764 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) ≤ (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))))
29 rpssre 12935 . . . . . 6 + ⊆ ℝ
30 ax-resscn 11101 . . . . . 6 ℝ ⊆ ℂ
3129, 30sstri 3953 . . . . 5 + ⊆ ℂ
32 eqid 2729 . . . . . 6 (𝑀s+) = (𝑀s+)
33 cnfldbas 21244 . . . . . . 7 ℂ = (Base‘ℂfld)
341, 33mgpbas 20030 . . . . . 6 ℂ = (Base‘𝑀)
3532, 34ressbas2 17184 . . . . 5 (ℝ+ ⊆ ℂ → ℝ+ = (Base‘(𝑀s+)))
3631, 35ax-mp 5 . . . 4 + = (Base‘(𝑀s+))
37 cnfld1 21281 . . . . . 6 1 = (1r‘ℂfld)
381, 37ringidval 20068 . . . . 5 1 = (0g𝑀)
391oveq1i 7379 . . . . . . . . . 10 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
4039rpmsubg 21324 . . . . . . . . 9 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
41 subgsubm 19056 . . . . . . . . 9 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
4240, 41ax-mp 5 . . . . . . . 8 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
43 cnring 21278 . . . . . . . . . 10 fld ∈ Ring
44 cnfld0 21280 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
45 cndrng 21286 . . . . . . . . . . . 12 fld ∈ DivRing
4633, 44, 45drngui 20620 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
4746, 1unitsubm 20271 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
4843, 47ax-mp 5 . . . . . . . . 9 (ℂ ∖ {0}) ∈ (SubMnd‘𝑀)
49 eqid 2729 . . . . . . . . . 10 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
5049subsubm 18719 . . . . . . . . 9 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
5148, 50ax-mp 5 . . . . . . . 8 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
5242, 51mpbi 230 . . . . . . 7 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
5352simpli 483 . . . . . 6 + ∈ (SubMnd‘𝑀)
54 eqid 2729 . . . . . . 7 (0g𝑀) = (0g𝑀)
5532, 54subm0 18718 . . . . . 6 (ℝ+ ∈ (SubMnd‘𝑀) → (0g𝑀) = (0g‘(𝑀s+)))
5653, 55ax-mp 5 . . . . 5 (0g𝑀) = (0g‘(𝑀s+))
5738, 56eqtri 2752 . . . 4 1 = (0g‘(𝑀s+))
58 cncrng 21276 . . . . . 6 fld ∈ CRing
591crngmgp 20126 . . . . . 6 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
6058, 59ax-mp 5 . . . . 5 𝑀 ∈ CMnd
6132submmnd 18716 . . . . . 6 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
6253, 61mp1i 13 . . . . 5 (𝜑 → (𝑀s+) ∈ Mnd)
6332subcmn 19743 . . . . 5 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
6460, 62, 63sylancr 587 . . . 4 (𝜑 → (𝑀s+) ∈ CMnd)
65 reex 11135 . . . . . . . 8 ℝ ∈ V
6665, 29ssexi 5272 . . . . . . 7 + ∈ V
67 cnfldmul 21248 . . . . . . . . 9 · = (.r‘ℂfld)
681, 67mgpplusg 20029 . . . . . . . 8 · = (+g𝑀)
6932, 68ressplusg 17230 . . . . . . 7 (ℝ+ ∈ V → · = (+g‘(𝑀s+)))
7066, 69ax-mp 5 . . . . . 6 · = (+g‘(𝑀s+))
71 eqid 2729 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
7271rpmsubg 21324 . . . . . . 7 + ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
731oveq1i 7379 . . . . . . . . 9 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
74 cnex 11125 . . . . . . . . . . 11 ℂ ∈ V
75 difss 4095 . . . . . . . . . . 11 (ℂ ∖ {0}) ⊆ ℂ
7674, 75ssexi 5272 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ V
77 rpcndif0 12948 . . . . . . . . . . 11 (𝑤 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0}))
7877ssriv 3947 . . . . . . . . . 10 + ⊆ (ℂ ∖ {0})
79 ressabs 17194 . . . . . . . . . 10 (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+))
8076, 78, 79mp2an 692 . . . . . . . . 9 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+)
8173, 80eqtr4i 2755 . . . . . . . 8 (𝑀s+) = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+)
8281subggrp 19037 . . . . . . 7 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → (𝑀s+) ∈ Grp)
8372, 82mp1i 13 . . . . . 6 (𝜑 → (𝑀s+) ∈ Grp)
84 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ+) → 𝑘 ∈ ℝ+)
8515adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ+) → (1 / (♯‘𝐴)) ∈ ℝ)
8684, 85rpcxpcld 26618 . . . . . . 7 ((𝜑𝑘 ∈ ℝ+) → (𝑘𝑐(1 / (♯‘𝐴))) ∈ ℝ+)
87 eqid 2729 . . . . . . 7 (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))
8886, 87fmptd 7068 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))):ℝ+⟶ℝ+)
89 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℝ+)
9089rprege0d 12978 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
91 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
9291rprege0d 12978 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
9316adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (1 / (♯‘𝐴)) ∈ ℂ)
94 mulcxp 26570 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 / (♯‘𝐴)) ∈ ℂ) → ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
9590, 92, 93, 94syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
96 rpmulcl 12952 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+)
9796adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) ∈ ℝ+)
98 oveq1 7376 . . . . . . . . 9 (𝑘 = (𝑥 · 𝑦) → (𝑘𝑐(1 / (♯‘𝐴))) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
99 ovex 7402 . . . . . . . . 9 (𝑘𝑐(1 / (♯‘𝐴))) ∈ V
10098, 87, 99fvmpt3i 6955 . . . . . . . 8 ((𝑥 · 𝑦) ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
10197, 100syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
102 oveq1 7376 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑘𝑐(1 / (♯‘𝐴))) = (𝑥𝑐(1 / (♯‘𝐴))))
103102, 87, 99fvmpt3i 6955 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) = (𝑥𝑐(1 / (♯‘𝐴))))
10489, 103syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) = (𝑥𝑐(1 / (♯‘𝐴))))
105 oveq1 7376 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑘𝑐(1 / (♯‘𝐴))) = (𝑦𝑐(1 / (♯‘𝐴))))
106105, 87, 99fvmpt3i 6955 . . . . . . . . 9 (𝑦 ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦) = (𝑦𝑐(1 / (♯‘𝐴))))
10791, 106syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦) = (𝑦𝑐(1 / (♯‘𝐴))))
108104, 107oveq12d 7387 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦)) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
10995, 101, 1083eqtr4d 2774 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = (((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦)))
11036, 36, 70, 70, 83, 83, 88, 109isghmd 19133 . . . . 5 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) GrpHom (𝑀s+)))
111 ghmmhm 19134 . . . . 5 ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) GrpHom (𝑀s+)) → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) MndHom (𝑀s+)))
112110, 111syl 17 . . . 4 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) MndHom (𝑀s+)))
113 1red 11151 . . . . 5 (𝜑 → 1 ∈ ℝ)
1144, 2, 113fdmfifsupp 9302 . . . 4 (𝜑𝐹 finSupp 1)
11536, 57, 64, 62, 2, 112, 4, 114gsummhm 19844 . . 3 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)))
11653a1i 11 . . . . 5 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
1174ffvelcdmda 7038 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
11815adantr 480 . . . . . . 7 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ)
119117, 118rpcxpcld 26618 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))) ∈ ℝ+)
120 eqid 2729 . . . . . 6 (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))
121119, 120fmptd 7068 . . . . 5 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))):𝐴⟶ℝ+)
1222, 116, 121, 32gsumsubm 18738 . . . 4 (𝜑 → (𝑀 Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))) = ((𝑀s+) Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
1239adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ+)
1244feqmptd 6911 . . . . . 6 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
1252, 117, 123, 124, 13offval2 7653 . . . . 5 (𝜑 → (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))})) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))))
126125oveq2d 7385 . . . 4 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = (𝑀 Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
127102cbvmptv 5206 . . . . . . 7 (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(1 / (♯‘𝐴))))
128127a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(1 / (♯‘𝐴)))))
129 oveq1 7376 . . . . . 6 (𝑥 = (𝐹𝑘) → (𝑥𝑐(1 / (♯‘𝐴))) = ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))
130117, 124, 128, 129fmptco 7083 . . . . 5 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))))
131130oveq2d 7385 . . . 4 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = ((𝑀s+) Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
132122, 126, 1313eqtr4rd 2775 . . 3 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))))
13336, 57, 64, 2, 4, 114gsumcl 19821 . . . . 5 (𝜑 → ((𝑀s+) Σg 𝐹) ∈ ℝ+)
134 oveq1 7376 . . . . . 6 (𝑘 = ((𝑀s+) Σg 𝐹) → (𝑘𝑐(1 / (♯‘𝐴))) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
135134, 87, 99fvmpt3i 6955 . . . . 5 (((𝑀s+) Σg 𝐹) ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
136133, 135syl 17 . . . 4 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
1372, 116, 4, 32gsumsubm 18738 . . . . 5 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀s+) Σg 𝐹))
138137oveq1d 7384 . . . 4 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
139136, 138eqtr4d 2767 . . 3 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
140115, 132, 1393eqtr3d 2772 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
141117rpcnd 12973 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1422, 141fsumcl 15675 . . . . . 6 (𝜑 → Σ𝑘𝐴 (𝐹𝑘) ∈ ℂ)
143142, 23, 24divrecd 11937 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)) = (Σ𝑘𝐴 (𝐹𝑘) · (1 / (♯‘𝐴))))
1442, 16, 141fsummulc1 15727 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐹𝑘) · (1 / (♯‘𝐴))) = Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))))
145143, 144eqtr2d 2765 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))) = (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)))
14616adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℂ)
147141, 146mulcld 11170 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) · (1 / (♯‘𝐴))) ∈ ℂ)
1482, 147gsumfsum 21327 . . . 4 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))) = Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))))
1492, 141gsumfsum 21327 . . . . 5 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) = Σ𝑘𝐴 (𝐹𝑘))
150149oveq1d 7384 . . . 4 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)) = (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)))
151145, 148, 1503eqtr4d 2774 . . 3 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))) = ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)))
1522, 117, 146, 124, 13offval2 7653 . . . 4 (𝜑 → (𝐹f · (𝐴 × {(1 / (♯‘𝐴))})) = (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴)))))
153152oveq2d 7385 . . 3 (𝜑 → (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))) = (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))))
154124oveq2d 7385 . . . 4 (𝜑 → (ℂfld Σg 𝐹) = (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))))
155154oveq1d 7384 . . 3 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)))
156151, 153, 1553eqtr4d 2774 . 2 (𝜑 → (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
15728, 140, 1563brtr3d 5133 1 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  wss 3911  c0 4292  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  cle 11185   / cdiv 11811  cn 12162  +crp 12927  chash 14271  Σcsu 15628  Basecbs 17155  s cress 17176  +gcplusg 17196  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637   MndHom cmhm 18684  SubMndcsubmnd 18685  Grpcgrp 18841  SubGrpcsubg 19028   GrpHom cghm 19120  CMndccmn 19686  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119  fldccnfld 21240  𝑐ccxp 26440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-ghm 19121  df-gim 19167  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-subrng 20431  df-subrg 20455  df-drng 20616  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-refld 21490  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-cxp 26442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator