Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmlemALT Structured version   Visualization version   GIF version

Theorem amgmlemALT 48897
Description: Alternate proof of amgmlem 27051 using amgmwlem 48896. (Contributed by Kunhao Zheng, 20-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
amgmlemALT.0 𝑀 = (mulGrp‘ℂfld)
amgmlemALT.1 (𝜑𝐴 ∈ Fin)
amgmlemALT.2 (𝜑𝐴 ≠ ∅)
amgmlemALT.3 (𝜑𝐹:𝐴⟶ℝ+)
Assertion
Ref Expression
amgmlemALT (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgmlemALT
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmlemALT.0 . . 3 𝑀 = (mulGrp‘ℂfld)
2 amgmlemALT.1 . . 3 (𝜑𝐴 ∈ Fin)
3 amgmlemALT.2 . . 3 (𝜑𝐴 ≠ ∅)
4 amgmlemALT.3 . . 3 (𝜑𝐹:𝐴⟶ℝ+)
5 hashnncl 14415 . . . . . . . 8 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
62, 5syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
73, 6mpbird 257 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℕ)
87nnrpd 13097 . . . . 5 (𝜑 → (♯‘𝐴) ∈ ℝ+)
98rpreccld 13109 . . . 4 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ+)
10 fconst6g 6810 . . . 4 ((1 / (♯‘𝐴)) ∈ ℝ+ → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+)
119, 10syl 17 . . 3 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶ℝ+)
12 fconstmpt 5762 . . . . . 6 (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴)))
1312a1i 11 . . . . 5 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
1413oveq2d 7464 . . . 4 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))))
157nnrecred 12344 . . . . . 6 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ)
1615recnd 11318 . . . . 5 (𝜑 → (1 / (♯‘𝐴)) ∈ ℂ)
17 simpl 482 . . . . . 6 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → 𝐴 ∈ Fin)
18 simplr 768 . . . . . 6 (((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) ∧ 𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℂ)
1917, 18gsumfsum 21475 . . . . 5 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘𝐴 (1 / (♯‘𝐴)))
202, 16, 19syl2anc 583 . . . 4 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = Σ𝑘𝐴 (1 / (♯‘𝐴)))
21 fsumconst 15838 . . . . . 6 ((𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → Σ𝑘𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
222, 16, 21syl2anc 583 . . . . 5 (𝜑 → Σ𝑘𝐴 (1 / (♯‘𝐴)) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
237nncnd 12309 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℂ)
247nnne0d 12343 . . . . . 6 (𝜑 → (♯‘𝐴) ≠ 0)
2523, 24recidd 12065 . . . . 5 (𝜑 → ((♯‘𝐴) · (1 / (♯‘𝐴))) = 1)
2622, 25eqtrd 2780 . . . 4 (𝜑 → Σ𝑘𝐴 (1 / (♯‘𝐴)) = 1)
2714, 20, 263eqtrd 2784 . . 3 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1)
281, 2, 3, 4, 11, 27amgmwlem 48896 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) ≤ (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))))
29 rpssre 13064 . . . . . 6 + ⊆ ℝ
30 ax-resscn 11241 . . . . . 6 ℝ ⊆ ℂ
3129, 30sstri 4018 . . . . 5 + ⊆ ℂ
32 eqid 2740 . . . . . 6 (𝑀s+) = (𝑀s+)
33 cnfldbas 21391 . . . . . . 7 ℂ = (Base‘ℂfld)
341, 33mgpbas 20167 . . . . . 6 ℂ = (Base‘𝑀)
3532, 34ressbas2 17296 . . . . 5 (ℝ+ ⊆ ℂ → ℝ+ = (Base‘(𝑀s+)))
3631, 35ax-mp 5 . . . 4 + = (Base‘(𝑀s+))
37 cnfld1 21429 . . . . . 6 1 = (1r‘ℂfld)
381, 37ringidval 20210 . . . . 5 1 = (0g𝑀)
391oveq1i 7458 . . . . . . . . . 10 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
4039rpmsubg 21472 . . . . . . . . 9 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
41 subgsubm 19188 . . . . . . . . 9 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
4240, 41ax-mp 5 . . . . . . . 8 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
43 cnring 21426 . . . . . . . . . 10 fld ∈ Ring
44 cnfld0 21428 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
45 cndrng 21434 . . . . . . . . . . . 12 fld ∈ DivRing
4633, 44, 45drngui 20757 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
4746, 1unitsubm 20412 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
4843, 47ax-mp 5 . . . . . . . . 9 (ℂ ∖ {0}) ∈ (SubMnd‘𝑀)
49 eqid 2740 . . . . . . . . . 10 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
5049subsubm 18851 . . . . . . . . 9 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
5148, 50ax-mp 5 . . . . . . . 8 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
5242, 51mpbi 230 . . . . . . 7 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
5352simpli 483 . . . . . 6 + ∈ (SubMnd‘𝑀)
54 eqid 2740 . . . . . . 7 (0g𝑀) = (0g𝑀)
5532, 54subm0 18850 . . . . . 6 (ℝ+ ∈ (SubMnd‘𝑀) → (0g𝑀) = (0g‘(𝑀s+)))
5653, 55ax-mp 5 . . . . 5 (0g𝑀) = (0g‘(𝑀s+))
5738, 56eqtri 2768 . . . 4 1 = (0g‘(𝑀s+))
58 cncrng 21424 . . . . . 6 fld ∈ CRing
591crngmgp 20268 . . . . . 6 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
6058, 59ax-mp 5 . . . . 5 𝑀 ∈ CMnd
6132submmnd 18848 . . . . . 6 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
6253, 61mp1i 13 . . . . 5 (𝜑 → (𝑀s+) ∈ Mnd)
6332subcmn 19879 . . . . 5 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
6460, 62, 63sylancr 586 . . . 4 (𝜑 → (𝑀s+) ∈ CMnd)
65 reex 11275 . . . . . . . 8 ℝ ∈ V
6665, 29ssexi 5340 . . . . . . 7 + ∈ V
67 cnfldmul 21395 . . . . . . . . 9 · = (.r‘ℂfld)
681, 67mgpplusg 20165 . . . . . . . 8 · = (+g𝑀)
6932, 68ressplusg 17349 . . . . . . 7 (ℝ+ ∈ V → · = (+g‘(𝑀s+)))
7066, 69ax-mp 5 . . . . . 6 · = (+g‘(𝑀s+))
71 eqid 2740 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
7271rpmsubg 21472 . . . . . . 7 + ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
731oveq1i 7458 . . . . . . . . 9 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
74 cnex 11265 . . . . . . . . . . 11 ℂ ∈ V
75 difss 4159 . . . . . . . . . . 11 (ℂ ∖ {0}) ⊆ ℂ
7674, 75ssexi 5340 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ V
77 rpcndif0 13076 . . . . . . . . . . 11 (𝑤 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0}))
7877ssriv 4012 . . . . . . . . . 10 + ⊆ (ℂ ∖ {0})
79 ressabs 17308 . . . . . . . . . 10 (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+))
8076, 78, 79mp2an 691 . . . . . . . . 9 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+)
8173, 80eqtr4i 2771 . . . . . . . 8 (𝑀s+) = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+)
8281subggrp 19169 . . . . . . 7 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → (𝑀s+) ∈ Grp)
8372, 82mp1i 13 . . . . . 6 (𝜑 → (𝑀s+) ∈ Grp)
84 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ+) → 𝑘 ∈ ℝ+)
8515adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℝ+) → (1 / (♯‘𝐴)) ∈ ℝ)
8684, 85rpcxpcld 26793 . . . . . . 7 ((𝜑𝑘 ∈ ℝ+) → (𝑘𝑐(1 / (♯‘𝐴))) ∈ ℝ+)
87 eqid 2740 . . . . . . 7 (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))
8886, 87fmptd 7148 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))):ℝ+⟶ℝ+)
89 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℝ+)
9089rprege0d 13106 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
91 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
9291rprege0d 13106 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
9316adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (1 / (♯‘𝐴)) ∈ ℂ)
94 mulcxp 26745 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 / (♯‘𝐴)) ∈ ℂ) → ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
9590, 92, 93, 94syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
96 rpmulcl 13080 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+)
9796adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) ∈ ℝ+)
98 oveq1 7455 . . . . . . . . 9 (𝑘 = (𝑥 · 𝑦) → (𝑘𝑐(1 / (♯‘𝐴))) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
99 ovex 7481 . . . . . . . . 9 (𝑘𝑐(1 / (♯‘𝐴))) ∈ V
10098, 87, 99fvmpt3i 7034 . . . . . . . 8 ((𝑥 · 𝑦) ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
10197, 100syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦)↑𝑐(1 / (♯‘𝐴))))
102 oveq1 7455 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑘𝑐(1 / (♯‘𝐴))) = (𝑥𝑐(1 / (♯‘𝐴))))
103102, 87, 99fvmpt3i 7034 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) = (𝑥𝑐(1 / (♯‘𝐴))))
10489, 103syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) = (𝑥𝑐(1 / (♯‘𝐴))))
105 oveq1 7455 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑘𝑐(1 / (♯‘𝐴))) = (𝑦𝑐(1 / (♯‘𝐴))))
106105, 87, 99fvmpt3i 7034 . . . . . . . . 9 (𝑦 ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦) = (𝑦𝑐(1 / (♯‘𝐴))))
10791, 106syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦) = (𝑦𝑐(1 / (♯‘𝐴))))
108104, 107oveq12d 7466 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦)) = ((𝑥𝑐(1 / (♯‘𝐴))) · (𝑦𝑐(1 / (♯‘𝐴)))))
10995, 101, 1083eqtr4d 2790 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘(𝑥 · 𝑦)) = (((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑥) · ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘𝑦)))
11036, 36, 70, 70, 83, 83, 88, 109isghmd 19265 . . . . 5 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) GrpHom (𝑀s+)))
111 ghmmhm 19266 . . . . 5 ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) GrpHom (𝑀s+)) → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) MndHom (𝑀s+)))
112110, 111syl 17 . . . 4 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∈ ((𝑀s+) MndHom (𝑀s+)))
113 1red 11291 . . . . 5 (𝜑 → 1 ∈ ℝ)
1144, 2, 113fdmfifsupp 9444 . . . 4 (𝜑𝐹 finSupp 1)
11536, 57, 64, 62, 2, 112, 4, 114gsummhm 19980 . . 3 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)))
11653a1i 11 . . . . 5 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
1174ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
11815adantr 480 . . . . . . 7 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ)
119117, 118rpcxpcld 26793 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))) ∈ ℝ+)
120 eqid 2740 . . . . . 6 (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))
121119, 120fmptd 7148 . . . . 5 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))):𝐴⟶ℝ+)
1222, 116, 121, 32gsumsubm 18870 . . . 4 (𝜑 → (𝑀 Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))) = ((𝑀s+) Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
1239adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ+)
1244feqmptd 6990 . . . . . 6 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
1252, 117, 123, 124, 13offval2 7734 . . . . 5 (𝜑 → (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))})) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))))
126125oveq2d 7464 . . . 4 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = (𝑀 Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
127102cbvmptv 5279 . . . . . . 7 (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(1 / (♯‘𝐴))))
128127a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) = (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(1 / (♯‘𝐴)))))
129 oveq1 7455 . . . . . 6 (𝑥 = (𝐹𝑘) → (𝑥𝑐(1 / (♯‘𝐴))) = ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))
130117, 124, 128, 129fmptco 7163 . . . . 5 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹) = (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴)))))
131130oveq2d 7464 . . . 4 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = ((𝑀s+) Σg (𝑘𝐴 ↦ ((𝐹𝑘)↑𝑐(1 / (♯‘𝐴))))))
132122, 126, 1313eqtr4rd 2791 . . 3 (𝜑 → ((𝑀s+) Σg ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴)))) ∘ 𝐹)) = (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))))
13336, 57, 64, 2, 4, 114gsumcl 19957 . . . . 5 (𝜑 → ((𝑀s+) Σg 𝐹) ∈ ℝ+)
134 oveq1 7455 . . . . . 6 (𝑘 = ((𝑀s+) Σg 𝐹) → (𝑘𝑐(1 / (♯‘𝐴))) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
135134, 87, 99fvmpt3i 7034 . . . . 5 (((𝑀s+) Σg 𝐹) ∈ ℝ+ → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
136133, 135syl 17 . . . 4 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
1372, 116, 4, 32gsumsubm 18870 . . . . 5 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀s+) Σg 𝐹))
138137oveq1d 7463 . . . 4 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (((𝑀s+) Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
139136, 138eqtr4d 2783 . . 3 (𝜑 → ((𝑘 ∈ ℝ+ ↦ (𝑘𝑐(1 / (♯‘𝐴))))‘((𝑀s+) Σg 𝐹)) = ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
140115, 132, 1393eqtr3d 2788 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐(𝐴 × {(1 / (♯‘𝐴))}))) = ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))))
141117rpcnd 13101 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1422, 141fsumcl 15781 . . . . . 6 (𝜑 → Σ𝑘𝐴 (𝐹𝑘) ∈ ℂ)
143142, 23, 24divrecd 12073 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)) = (Σ𝑘𝐴 (𝐹𝑘) · (1 / (♯‘𝐴))))
1442, 16, 141fsummulc1 15833 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐹𝑘) · (1 / (♯‘𝐴))) = Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))))
145143, 144eqtr2d 2781 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))) = (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)))
14616adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℂ)
147141, 146mulcld 11310 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) · (1 / (♯‘𝐴))) ∈ ℂ)
1482, 147gsumfsum 21475 . . . 4 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))) = Σ𝑘𝐴 ((𝐹𝑘) · (1 / (♯‘𝐴))))
1492, 141gsumfsum 21475 . . . . 5 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) = Σ𝑘𝐴 (𝐹𝑘))
150149oveq1d 7463 . . . 4 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)) = (Σ𝑘𝐴 (𝐹𝑘) / (♯‘𝐴)))
151145, 148, 1503eqtr4d 2790 . . 3 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))) = ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)))
1522, 117, 146, 124, 13offval2 7734 . . . 4 (𝜑 → (𝐹f · (𝐴 × {(1 / (♯‘𝐴))})) = (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴)))))
153152oveq2d 7464 . . 3 (𝜑 → (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))) = (ℂfld Σg (𝑘𝐴 ↦ ((𝐹𝑘) · (1 / (♯‘𝐴))))))
154124oveq2d 7464 . . . 4 (𝜑 → (ℂfld Σg 𝐹) = (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))))
155154oveq1d 7463 . . 3 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = ((ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) / (♯‘𝐴)))
156151, 153, 1553eqtr4d 2790 . 2 (𝜑 → (ℂfld Σg (𝐹f · (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
15728, 140, 1563brtr3d 5197 1 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cle 11325   / cdiv 11947  cn 12293  +crp 13057  chash 14379  Σcsu 15734  Basecbs 17258  s cress 17287  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772   MndHom cmhm 18816  SubMndcsubmnd 18817  Grpcgrp 18973  SubGrpcsubg 19160   GrpHom cghm 19252  CMndccmn 19822  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261  fldccnfld 21387  𝑐ccxp 26615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-subrng 20572  df-subrg 20597  df-drng 20753  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-refld 21646  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator