![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmgpabl | Structured version Visualization version GIF version |
Description: The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
cnmgpabl.m | β’ π = ((mulGrpββfld) βΎs (β β {0})) |
Ref | Expression |
---|---|
cnmgpabl | β’ π β Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncrng 21249 | . 2 β’ βfld β CRing | |
2 | cnfldbas 21231 | . . . 4 β’ β = (Baseββfld) | |
3 | cnfld0 21252 | . . . 4 β’ 0 = (0gββfld) | |
4 | cndrng 21257 | . . . 4 β’ βfld β DivRing | |
5 | 2, 3, 4 | drngui 20582 | . . 3 β’ (β β {0}) = (Unitββfld) |
6 | cnmgpabl.m | . . 3 β’ π = ((mulGrpββfld) βΎs (β β {0})) | |
7 | 5, 6 | unitabl 20275 | . 2 β’ (βfld β CRing β π β Abel) |
8 | 1, 7 | ax-mp 5 | 1 β’ π β Abel |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 β cdif 3937 {csn 4620 βcfv 6533 (class class class)co 7401 βcc 11103 0cc0 11105 βΎs cress 17171 Abelcabl 19690 mulGrpcmgp 20028 CRingccrg 20128 βfldccnfld 21227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-addf 11184 ax-mulf 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-starv 17210 df-tset 17214 df-ple 17215 df-ds 17217 df-unif 17218 df-0g 17385 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-grp 18855 df-minusg 18856 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20578 df-cnfld 21228 |
This theorem is referenced by: cnmsubglem 21291 dchrghm 27104 |
Copyright terms: Public domain | W3C validator |