![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expghm | Structured version Visualization version GIF version |
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
expghm.m | ⊢ 𝑀 = (mulGrp‘ℂfld) |
expghm.u | ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) |
Ref | Expression |
---|---|
expghm | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expclzlem 14134 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ (ℂ ∖ {0})) | |
2 | 1 | 3expa 1118 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ (ℂ ∖ {0})) |
3 | 2 | fmpttd 7149 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0})) |
4 | expaddz 14157 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) | |
5 | zaddcl 12683 | . . . . . 6 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦 + 𝑧) ∈ ℤ) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ) |
7 | oveq2 7456 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 𝑧) → (𝐴↑𝑥) = (𝐴↑(𝑦 + 𝑧))) | |
8 | eqid 2740 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) | |
9 | ovex 7481 | . . . . . 6 ⊢ (𝐴↑(𝑦 + 𝑧)) ∈ V | |
10 | 7, 8, 9 | fvmpt 7029 | . . . . 5 ⊢ ((𝑦 + 𝑧) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧))) |
11 | 6, 10 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧))) |
12 | oveq2 7456 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) | |
13 | ovex 7481 | . . . . . . 7 ⊢ (𝐴↑𝑦) ∈ V | |
14 | 12, 8, 13 | fvmpt 7029 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) = (𝐴↑𝑦)) |
15 | oveq2 7456 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝐴↑𝑥) = (𝐴↑𝑧)) | |
16 | ovex 7481 | . . . . . . 7 ⊢ (𝐴↑𝑧) ∈ V | |
17 | 15, 8, 16 | fvmpt 7029 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧) = (𝐴↑𝑧)) |
18 | 14, 17 | oveqan12d 7467 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) |
19 | 18 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) |
20 | 4, 11, 19 | 3eqtr4d 2790 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))) |
21 | 20 | ralrimivva 3208 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))) |
22 | zringgrp 21486 | . . . 4 ⊢ ℤring ∈ Grp | |
23 | cnring 21426 | . . . . 5 ⊢ ℂfld ∈ Ring | |
24 | cnfldbas 21391 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
25 | cnfld0 21428 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
26 | cndrng 21434 | . . . . . . 7 ⊢ ℂfld ∈ DivRing | |
27 | 24, 25, 26 | drngui 20757 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
28 | expghm.u | . . . . . . 7 ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) | |
29 | expghm.m | . . . . . . . 8 ⊢ 𝑀 = (mulGrp‘ℂfld) | |
30 | 29 | oveq1i 7458 | . . . . . . 7 ⊢ (𝑀 ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
31 | 28, 30 | eqtri 2768 | . . . . . 6 ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
32 | 27, 31 | unitgrp 20409 | . . . . 5 ⊢ (ℂfld ∈ Ring → 𝑈 ∈ Grp) |
33 | 23, 32 | ax-mp 5 | . . . 4 ⊢ 𝑈 ∈ Grp |
34 | 22, 33 | pm3.2i 470 | . . 3 ⊢ (ℤring ∈ Grp ∧ 𝑈 ∈ Grp) |
35 | zringbas 21487 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
36 | difss 4159 | . . . . 5 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
37 | 29, 24 | mgpbas 20167 | . . . . . 6 ⊢ ℂ = (Base‘𝑀) |
38 | 28, 37 | ressbas2 17296 | . . . . 5 ⊢ ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑈)) |
39 | 36, 38 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) = (Base‘𝑈) |
40 | zringplusg 21488 | . . . 4 ⊢ + = (+g‘ℤring) | |
41 | 27 | fvexi 6934 | . . . . 5 ⊢ (ℂ ∖ {0}) ∈ V |
42 | cnfldmul 21395 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
43 | 29, 42 | mgpplusg 20165 | . . . . . 6 ⊢ · = (+g‘𝑀) |
44 | 28, 43 | ressplusg 17349 | . . . . 5 ⊢ ((ℂ ∖ {0}) ∈ V → · = (+g‘𝑈)) |
45 | 41, 44 | ax-mp 5 | . . . 4 ⊢ · = (+g‘𝑈) |
46 | 35, 39, 40, 45 | isghm 19255 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))))) |
47 | 34, 46 | mpbiran 708 | . 2 ⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)))) |
48 | 3, 21, 47 | sylanbrc 582 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 + caddc 11187 · cmul 11189 ℤcz 12639 ↑cexp 14112 Basecbs 17258 ↾s cress 17287 +gcplusg 17311 Grpcgrp 18973 GrpHom cghm 19252 mulGrpcmgp 20161 Ringcrg 20260 Unitcui 20381 ℂfldccnfld 21387 ℤringczring 21480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-seq 14053 df-exp 14113 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-subg 19163 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-subrng 20572 df-subrg 20597 df-drng 20753 df-cnfld 21388 df-zring 21481 |
This theorem is referenced by: lgseisenlem4 27440 |
Copyright terms: Public domain | W3C validator |