![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expghm | Structured version Visualization version GIF version |
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
expghm.m | ⊢ 𝑀 = (mulGrp‘ℂfld) |
expghm.u | ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) |
Ref | Expression |
---|---|
expghm | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expclzlem 13262 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ (ℂ ∖ {0})) | |
2 | 1 | 3expa 1098 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ (ℂ ∖ {0})) |
3 | 2 | fmpttd 6696 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0})) |
4 | expaddz 13282 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) | |
5 | zaddcl 11829 | . . . . . 6 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦 + 𝑧) ∈ ℤ) | |
6 | 5 | adantl 474 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ) |
7 | oveq2 6978 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 𝑧) → (𝐴↑𝑥) = (𝐴↑(𝑦 + 𝑧))) | |
8 | eqid 2772 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) | |
9 | ovex 7002 | . . . . . 6 ⊢ (𝐴↑(𝑦 + 𝑧)) ∈ V | |
10 | 7, 8, 9 | fvmpt 6589 | . . . . 5 ⊢ ((𝑦 + 𝑧) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧))) |
11 | 6, 10 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧))) |
12 | oveq2 6978 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) | |
13 | ovex 7002 | . . . . . . 7 ⊢ (𝐴↑𝑦) ∈ V | |
14 | 12, 8, 13 | fvmpt 6589 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) = (𝐴↑𝑦)) |
15 | oveq2 6978 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝐴↑𝑥) = (𝐴↑𝑧)) | |
16 | ovex 7002 | . . . . . . 7 ⊢ (𝐴↑𝑧) ∈ V | |
17 | 15, 8, 16 | fvmpt 6589 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧) = (𝐴↑𝑧)) |
18 | 14, 17 | oveqan12d 6989 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) |
19 | 18 | adantl 474 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) |
20 | 4, 11, 19 | 3eqtr4d 2818 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))) |
21 | 20 | ralrimivva 3135 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))) |
22 | zringgrp 20318 | . . . 4 ⊢ ℤring ∈ Grp | |
23 | cnring 20263 | . . . . 5 ⊢ ℂfld ∈ Ring | |
24 | cnfldbas 20245 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
25 | cnfld0 20265 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
26 | cndrng 20270 | . . . . . . 7 ⊢ ℂfld ∈ DivRing | |
27 | 24, 25, 26 | drngui 19225 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
28 | expghm.u | . . . . . . 7 ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) | |
29 | expghm.m | . . . . . . . 8 ⊢ 𝑀 = (mulGrp‘ℂfld) | |
30 | 29 | oveq1i 6980 | . . . . . . 7 ⊢ (𝑀 ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
31 | 28, 30 | eqtri 2796 | . . . . . 6 ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
32 | 27, 31 | unitgrp 19134 | . . . . 5 ⊢ (ℂfld ∈ Ring → 𝑈 ∈ Grp) |
33 | 23, 32 | ax-mp 5 | . . . 4 ⊢ 𝑈 ∈ Grp |
34 | 22, 33 | pm3.2i 463 | . . 3 ⊢ (ℤring ∈ Grp ∧ 𝑈 ∈ Grp) |
35 | zringbas 20319 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
36 | difss 3992 | . . . . 5 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
37 | 29, 24 | mgpbas 18962 | . . . . . 6 ⊢ ℂ = (Base‘𝑀) |
38 | 28, 37 | ressbas2 16405 | . . . . 5 ⊢ ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑈)) |
39 | 36, 38 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) = (Base‘𝑈) |
40 | zringplusg 20320 | . . . 4 ⊢ + = (+g‘ℤring) | |
41 | 27 | fvexi 6507 | . . . . 5 ⊢ (ℂ ∖ {0}) ∈ V |
42 | cnfldmul 20247 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
43 | 29, 42 | mgpplusg 18960 | . . . . . 6 ⊢ · = (+g‘𝑀) |
44 | 28, 43 | ressplusg 16462 | . . . . 5 ⊢ ((ℂ ∖ {0}) ∈ V → · = (+g‘𝑈)) |
45 | 41, 44 | ax-mp 5 | . . . 4 ⊢ · = (+g‘𝑈) |
46 | 35, 39, 40, 45 | isghm 18123 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))))) |
47 | 34, 46 | mpbiran 696 | . 2 ⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)))) |
48 | 3, 21, 47 | sylanbrc 575 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2961 ∀wral 3082 Vcvv 3409 ∖ cdif 3820 ⊆ wss 3823 {csn 4435 ↦ cmpt 5002 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 ℂcc 10327 0cc0 10329 + caddc 10332 · cmul 10334 ℤcz 11787 ↑cexp 13238 Basecbs 16333 ↾s cress 16334 +gcplusg 16415 Grpcgrp 17885 GrpHom cghm 18120 mulGrpcmgp 18956 Ringcrg 19014 Unitcui 19106 ℂfldccnfld 20241 ℤringzring 20313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-addf 10408 ax-mulf 10409 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-tpos 7689 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-oadd 7903 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-nn 11434 df-2 11497 df-3 11498 df-4 11499 df-5 11500 df-6 11501 df-7 11502 df-8 11503 df-9 11504 df-n0 11702 df-z 11788 df-dec 11906 df-uz 12053 df-fz 12703 df-seq 13179 df-exp 13239 df-struct 16335 df-ndx 16336 df-slot 16337 df-base 16339 df-sets 16340 df-ress 16341 df-plusg 16428 df-mulr 16429 df-starv 16430 df-tset 16434 df-ple 16435 df-ds 16437 df-unif 16438 df-0g 16565 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-grp 17888 df-minusg 17889 df-subg 18054 df-ghm 18121 df-cmn 18662 df-mgp 18957 df-ur 18969 df-ring 19016 df-cring 19017 df-oppr 19090 df-dvdsr 19108 df-unit 19109 df-invr 19139 df-dvr 19150 df-drng 19221 df-subrg 19250 df-cnfld 20242 df-zring 20314 |
This theorem is referenced by: lgseisenlem4 25650 |
Copyright terms: Public domain | W3C validator |