MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expghm Structured version   Visualization version   GIF version

Theorem expghm 20052
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
expghm.m 𝑀 = (mulGrp‘ℂfld)
expghm.u 𝑈 = (𝑀s (ℂ ∖ {0}))
Assertion
Ref Expression
expghm ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑈(𝑥)   𝑀(𝑥)

Proof of Theorem expghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expclzlem 13107 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ (ℂ ∖ {0}))
213expa 1140 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ (ℂ ∖ {0}))
32fmpttd 6607 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}))
4 expaddz 13127 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
5 zaddcl 11683 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦 + 𝑧) ∈ ℤ)
65adantl 469 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ)
7 oveq2 6882 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝐴𝑥) = (𝐴↑(𝑦 + 𝑧)))
8 eqid 2806 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝐴𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴𝑥))
9 ovex 6906 . . . . . 6 (𝐴↑(𝑦 + 𝑧)) ∈ V
107, 8, 9fvmpt 6503 . . . . 5 ((𝑦 + 𝑧) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
116, 10syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
12 oveq2 6882 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
13 ovex 6906 . . . . . . 7 (𝐴𝑦) ∈ V
1412, 8, 13fvmpt 6503 . . . . . 6 (𝑦 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) = (𝐴𝑦))
15 oveq2 6882 . . . . . . 7 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
16 ovex 6906 . . . . . . 7 (𝐴𝑧) ∈ V
1715, 8, 16fvmpt 6503 . . . . . 6 (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧) = (𝐴𝑧))
1814, 17oveqan12d 6893 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
1918adantl 469 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
204, 11, 193eqtr4d 2850 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))
2120ralrimivva 3159 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))
22 zringgrp 20031 . . . 4 ring ∈ Grp
23 cnring 19976 . . . . 5 fld ∈ Ring
24 cnfldbas 19958 . . . . . . 7 ℂ = (Base‘ℂfld)
25 cnfld0 19978 . . . . . . 7 0 = (0g‘ℂfld)
26 cndrng 19983 . . . . . . 7 fld ∈ DivRing
2724, 25, 26drngui 18957 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
28 expghm.u . . . . . . 7 𝑈 = (𝑀s (ℂ ∖ {0}))
29 expghm.m . . . . . . . 8 𝑀 = (mulGrp‘ℂfld)
3029oveq1i 6884 . . . . . . 7 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3128, 30eqtri 2828 . . . . . 6 𝑈 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3227, 31unitgrp 18869 . . . . 5 (ℂfld ∈ Ring → 𝑈 ∈ Grp)
3323, 32ax-mp 5 . . . 4 𝑈 ∈ Grp
3422, 33pm3.2i 458 . . 3 (ℤring ∈ Grp ∧ 𝑈 ∈ Grp)
35 zringbas 20032 . . . 4 ℤ = (Base‘ℤring)
36 difss 3936 . . . . 5 (ℂ ∖ {0}) ⊆ ℂ
3729, 24mgpbas 18697 . . . . . 6 ℂ = (Base‘𝑀)
3828, 37ressbas2 16142 . . . . 5 ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑈))
3936, 38ax-mp 5 . . . 4 (ℂ ∖ {0}) = (Base‘𝑈)
40 zringplusg 20033 . . . 4 + = (+g‘ℤring)
4127fvexi 6422 . . . . 5 (ℂ ∖ {0}) ∈ V
42 cnfldmul 19960 . . . . . . 7 · = (.r‘ℂfld)
4329, 42mgpplusg 18695 . . . . . 6 · = (+g𝑀)
4428, 43ressplusg 16204 . . . . 5 ((ℂ ∖ {0}) ∈ V → · = (+g𝑈))
4541, 44ax-mp 5 . . . 4 · = (+g𝑈)
4635, 39, 40, 45isghm 17862 . . 3 ((𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))))
4734, 46mpbiran 691 . 2 ((𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧))))
483, 21, 47sylanbrc 574 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2156  wne 2978  wral 3096  Vcvv 3391  cdif 3766  wss 3769  {csn 4370  cmpt 4923  wf 6097  cfv 6101  (class class class)co 6874  cc 10219  0cc0 10221   + caddc 10224   · cmul 10226  cz 11643  cexp 13083  Basecbs 16068  s cress 16069  +gcplusg 16153  Grpcgrp 17627   GrpHom cghm 17859  mulGrpcmgp 18691  Ringcrg 18749  Unitcui 18841  fldccnfld 19954  ringzring 20026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-addf 10300  ax-mulf 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-tpos 7587  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-oadd 7800  df-er 7979  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-5 11367  df-6 11368  df-7 11369  df-8 11370  df-9 11371  df-n0 11560  df-z 11644  df-dec 11760  df-uz 11905  df-fz 12550  df-seq 13025  df-exp 13084  df-struct 16070  df-ndx 16071  df-slot 16072  df-base 16074  df-sets 16075  df-ress 16076  df-plusg 16166  df-mulr 16167  df-starv 16168  df-tset 16172  df-ple 16173  df-ds 16175  df-unif 16176  df-0g 16307  df-mgm 17447  df-sgrp 17489  df-mnd 17500  df-grp 17630  df-minusg 17631  df-subg 17793  df-ghm 17860  df-cmn 18396  df-mgp 18692  df-ur 18704  df-ring 18751  df-cring 18752  df-oppr 18825  df-dvdsr 18843  df-unit 18844  df-invr 18874  df-dvr 18885  df-drng 18953  df-subrg 18982  df-cnfld 19955  df-zring 20027
This theorem is referenced by:  lgseisenlem4  25317
  Copyright terms: Public domain W3C validator