MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expghm Structured version   Visualization version   GIF version

Theorem expghm 20339
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
expghm.m 𝑀 = (mulGrp‘ℂfld)
expghm.u 𝑈 = (𝑀s (ℂ ∖ {0}))
Assertion
Ref Expression
expghm ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑈(𝑥)   𝑀(𝑥)

Proof of Theorem expghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expclzlem 13262 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ (ℂ ∖ {0}))
213expa 1098 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ (ℂ ∖ {0}))
32fmpttd 6696 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}))
4 expaddz 13282 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
5 zaddcl 11829 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦 + 𝑧) ∈ ℤ)
65adantl 474 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ)
7 oveq2 6978 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝐴𝑥) = (𝐴↑(𝑦 + 𝑧)))
8 eqid 2772 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝐴𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴𝑥))
9 ovex 7002 . . . . . 6 (𝐴↑(𝑦 + 𝑧)) ∈ V
107, 8, 9fvmpt 6589 . . . . 5 ((𝑦 + 𝑧) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
116, 10syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
12 oveq2 6978 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
13 ovex 7002 . . . . . . 7 (𝐴𝑦) ∈ V
1412, 8, 13fvmpt 6589 . . . . . 6 (𝑦 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) = (𝐴𝑦))
15 oveq2 6978 . . . . . . 7 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
16 ovex 7002 . . . . . . 7 (𝐴𝑧) ∈ V
1715, 8, 16fvmpt 6589 . . . . . 6 (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧) = (𝐴𝑧))
1814, 17oveqan12d 6989 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
1918adantl 474 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
204, 11, 193eqtr4d 2818 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))
2120ralrimivva 3135 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))
22 zringgrp 20318 . . . 4 ring ∈ Grp
23 cnring 20263 . . . . 5 fld ∈ Ring
24 cnfldbas 20245 . . . . . . 7 ℂ = (Base‘ℂfld)
25 cnfld0 20265 . . . . . . 7 0 = (0g‘ℂfld)
26 cndrng 20270 . . . . . . 7 fld ∈ DivRing
2724, 25, 26drngui 19225 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
28 expghm.u . . . . . . 7 𝑈 = (𝑀s (ℂ ∖ {0}))
29 expghm.m . . . . . . . 8 𝑀 = (mulGrp‘ℂfld)
3029oveq1i 6980 . . . . . . 7 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3128, 30eqtri 2796 . . . . . 6 𝑈 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3227, 31unitgrp 19134 . . . . 5 (ℂfld ∈ Ring → 𝑈 ∈ Grp)
3323, 32ax-mp 5 . . . 4 𝑈 ∈ Grp
3422, 33pm3.2i 463 . . 3 (ℤring ∈ Grp ∧ 𝑈 ∈ Grp)
35 zringbas 20319 . . . 4 ℤ = (Base‘ℤring)
36 difss 3992 . . . . 5 (ℂ ∖ {0}) ⊆ ℂ
3729, 24mgpbas 18962 . . . . . 6 ℂ = (Base‘𝑀)
3828, 37ressbas2 16405 . . . . 5 ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑈))
3936, 38ax-mp 5 . . . 4 (ℂ ∖ {0}) = (Base‘𝑈)
40 zringplusg 20320 . . . 4 + = (+g‘ℤring)
4127fvexi 6507 . . . . 5 (ℂ ∖ {0}) ∈ V
42 cnfldmul 20247 . . . . . . 7 · = (.r‘ℂfld)
4329, 42mgpplusg 18960 . . . . . 6 · = (+g𝑀)
4428, 43ressplusg 16462 . . . . 5 ((ℂ ∖ {0}) ∈ V → · = (+g𝑈))
4541, 44ax-mp 5 . . . 4 · = (+g𝑈)
4635, 39, 40, 45isghm 18123 . . 3 ((𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))))
4734, 46mpbiran 696 . 2 ((𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧))))
483, 21, 47sylanbrc 575 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2961  wral 3082  Vcvv 3409  cdif 3820  wss 3823  {csn 4435  cmpt 5002  wf 6178  cfv 6182  (class class class)co 6970  cc 10327  0cc0 10329   + caddc 10332   · cmul 10334  cz 11787  cexp 13238  Basecbs 16333  s cress 16334  +gcplusg 16415  Grpcgrp 17885   GrpHom cghm 18120  mulGrpcmgp 18956  Ringcrg 19014  Unitcui 19106  fldccnfld 20241  ringzring 20313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-addf 10408  ax-mulf 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-tpos 7689  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-5 11500  df-6 11501  df-7 11502  df-8 11503  df-9 11504  df-n0 11702  df-z 11788  df-dec 11906  df-uz 12053  df-fz 12703  df-seq 13179  df-exp 13239  df-struct 16335  df-ndx 16336  df-slot 16337  df-base 16339  df-sets 16340  df-ress 16341  df-plusg 16428  df-mulr 16429  df-starv 16430  df-tset 16434  df-ple 16435  df-ds 16437  df-unif 16438  df-0g 16565  df-mgm 17704  df-sgrp 17746  df-mnd 17757  df-grp 17888  df-minusg 17889  df-subg 18054  df-ghm 18121  df-cmn 18662  df-mgp 18957  df-ur 18969  df-ring 19016  df-cring 19017  df-oppr 19090  df-dvdsr 19108  df-unit 19109  df-invr 19139  df-dvr 19150  df-drng 19221  df-subrg 19250  df-cnfld 20242  df-zring 20314
This theorem is referenced by:  lgseisenlem4  25650
  Copyright terms: Public domain W3C validator