| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expghm | Structured version Visualization version GIF version | ||
| Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| expghm.m | ⊢ 𝑀 = (mulGrp‘ℂfld) |
| expghm.u | ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) |
| Ref | Expression |
|---|---|
| expghm | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expclzlem 14099 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ (ℂ ∖ {0})) | |
| 2 | 1 | 3expa 1118 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ (ℂ ∖ {0})) |
| 3 | 2 | fmpttd 7104 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0})) |
| 4 | expaddz 14122 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) | |
| 5 | zaddcl 12630 | . . . . . 6 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦 + 𝑧) ∈ ℤ) | |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ) |
| 7 | oveq2 7411 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 𝑧) → (𝐴↑𝑥) = (𝐴↑(𝑦 + 𝑧))) | |
| 8 | eqid 2735 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) | |
| 9 | ovex 7436 | . . . . . 6 ⊢ (𝐴↑(𝑦 + 𝑧)) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6985 | . . . . 5 ⊢ ((𝑦 + 𝑧) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧))) |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧))) |
| 12 | oveq2 7411 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) | |
| 13 | ovex 7436 | . . . . . . 7 ⊢ (𝐴↑𝑦) ∈ V | |
| 14 | 12, 8, 13 | fvmpt 6985 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) = (𝐴↑𝑦)) |
| 15 | oveq2 7411 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝐴↑𝑥) = (𝐴↑𝑧)) | |
| 16 | ovex 7436 | . . . . . . 7 ⊢ (𝐴↑𝑧) ∈ V | |
| 17 | 15, 8, 16 | fvmpt 6985 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧) = (𝐴↑𝑧)) |
| 18 | 14, 17 | oveqan12d 7422 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) |
| 20 | 4, 11, 19 | 3eqtr4d 2780 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))) |
| 21 | 20 | ralrimivva 3187 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))) |
| 22 | zringgrp 21411 | . . . 4 ⊢ ℤring ∈ Grp | |
| 23 | cnring 21351 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 24 | cnfldbas 21317 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 25 | cnfld0 21353 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
| 26 | cndrng 21359 | . . . . . . 7 ⊢ ℂfld ∈ DivRing | |
| 27 | 24, 25, 26 | drngui 20693 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
| 28 | expghm.u | . . . . . . 7 ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) | |
| 29 | expghm.m | . . . . . . . 8 ⊢ 𝑀 = (mulGrp‘ℂfld) | |
| 30 | 29 | oveq1i 7413 | . . . . . . 7 ⊢ (𝑀 ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| 31 | 28, 30 | eqtri 2758 | . . . . . 6 ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| 32 | 27, 31 | unitgrp 20341 | . . . . 5 ⊢ (ℂfld ∈ Ring → 𝑈 ∈ Grp) |
| 33 | 23, 32 | ax-mp 5 | . . . 4 ⊢ 𝑈 ∈ Grp |
| 34 | 22, 33 | pm3.2i 470 | . . 3 ⊢ (ℤring ∈ Grp ∧ 𝑈 ∈ Grp) |
| 35 | zringbas 21412 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
| 36 | difss 4111 | . . . . 5 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
| 37 | 29, 24 | mgpbas 20103 | . . . . . 6 ⊢ ℂ = (Base‘𝑀) |
| 38 | 28, 37 | ressbas2 17257 | . . . . 5 ⊢ ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑈)) |
| 39 | 36, 38 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) = (Base‘𝑈) |
| 40 | zringplusg 21413 | . . . 4 ⊢ + = (+g‘ℤring) | |
| 41 | 27 | fvexi 6889 | . . . . 5 ⊢ (ℂ ∖ {0}) ∈ V |
| 42 | cnfldmul 21321 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
| 43 | 29, 42 | mgpplusg 20102 | . . . . . 6 ⊢ · = (+g‘𝑀) |
| 44 | 28, 43 | ressplusg 17303 | . . . . 5 ⊢ ((ℂ ∖ {0}) ∈ V → · = (+g‘𝑈)) |
| 45 | 41, 44 | ax-mp 5 | . . . 4 ⊢ · = (+g‘𝑈) |
| 46 | 35, 39, 40, 45 | isghm 19196 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))))) |
| 47 | 34, 46 | mpbiran 709 | . 2 ⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)))) |
| 48 | 3, 21, 47 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 ↦ cmpt 5201 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 0cc0 11127 + caddc 11130 · cmul 11132 ℤcz 12586 ↑cexp 14077 Basecbs 17226 ↾s cress 17249 +gcplusg 17269 Grpcgrp 18914 GrpHom cghm 19193 mulGrpcmgp 20098 Ringcrg 20191 Unitcui 20313 ℂfldccnfld 21313 ℤringczring 21405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-addf 11206 ax-mulf 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-seq 14018 df-exp 14078 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-subg 19104 df-ghm 19194 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-dvr 20359 df-subrng 20504 df-subrg 20528 df-drng 20689 df-cnfld 21314 df-zring 21406 |
| This theorem is referenced by: lgseisenlem4 27339 |
| Copyright terms: Public domain | W3C validator |