MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expghm Structured version   Visualization version   GIF version

Theorem expghm 21361
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
expghm.m 𝑀 = (mulGrp‘ℂfld)
expghm.u 𝑈 = (𝑀s (ℂ ∖ {0}))
Assertion
Ref Expression
expghm ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑈(𝑥)   𝑀(𝑥)

Proof of Theorem expghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expclzlem 14024 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ (ℂ ∖ {0}))
213expa 1118 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ (ℂ ∖ {0}))
32fmpttd 7069 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}))
4 expaddz 14047 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
5 zaddcl 12549 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦 + 𝑧) ∈ ℤ)
65adantl 481 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ)
7 oveq2 7377 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝐴𝑥) = (𝐴↑(𝑦 + 𝑧)))
8 eqid 2729 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝐴𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴𝑥))
9 ovex 7402 . . . . . 6 (𝐴↑(𝑦 + 𝑧)) ∈ V
107, 8, 9fvmpt 6950 . . . . 5 ((𝑦 + 𝑧) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
116, 10syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
12 oveq2 7377 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
13 ovex 7402 . . . . . . 7 (𝐴𝑦) ∈ V
1412, 8, 13fvmpt 6950 . . . . . 6 (𝑦 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) = (𝐴𝑦))
15 oveq2 7377 . . . . . . 7 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
16 ovex 7402 . . . . . . 7 (𝐴𝑧) ∈ V
1715, 8, 16fvmpt 6950 . . . . . 6 (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧) = (𝐴𝑧))
1814, 17oveqan12d 7388 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
1918adantl 481 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
204, 11, 193eqtr4d 2774 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))
2120ralrimivva 3178 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))
22 zringgrp 21338 . . . 4 ring ∈ Grp
23 cnring 21278 . . . . 5 fld ∈ Ring
24 cnfldbas 21244 . . . . . . 7 ℂ = (Base‘ℂfld)
25 cnfld0 21280 . . . . . . 7 0 = (0g‘ℂfld)
26 cndrng 21286 . . . . . . 7 fld ∈ DivRing
2724, 25, 26drngui 20620 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
28 expghm.u . . . . . . 7 𝑈 = (𝑀s (ℂ ∖ {0}))
29 expghm.m . . . . . . . 8 𝑀 = (mulGrp‘ℂfld)
3029oveq1i 7379 . . . . . . 7 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3128, 30eqtri 2752 . . . . . 6 𝑈 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3227, 31unitgrp 20268 . . . . 5 (ℂfld ∈ Ring → 𝑈 ∈ Grp)
3323, 32ax-mp 5 . . . 4 𝑈 ∈ Grp
3422, 33pm3.2i 470 . . 3 (ℤring ∈ Grp ∧ 𝑈 ∈ Grp)
35 zringbas 21339 . . . 4 ℤ = (Base‘ℤring)
36 difss 4095 . . . . 5 (ℂ ∖ {0}) ⊆ ℂ
3729, 24mgpbas 20030 . . . . . 6 ℂ = (Base‘𝑀)
3828, 37ressbas2 17184 . . . . 5 ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑈))
3936, 38ax-mp 5 . . . 4 (ℂ ∖ {0}) = (Base‘𝑈)
40 zringplusg 21340 . . . 4 + = (+g‘ℤring)
4127fvexi 6854 . . . . 5 (ℂ ∖ {0}) ∈ V
42 cnfldmul 21248 . . . . . . 7 · = (.r‘ℂfld)
4329, 42mgpplusg 20029 . . . . . 6 · = (+g𝑀)
4428, 43ressplusg 17230 . . . . 5 ((ℂ ∖ {0}) ∈ V → · = (+g𝑈))
4541, 44ax-mp 5 . . . 4 · = (+g𝑈)
4635, 39, 40, 45isghm 19123 . . 3 ((𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))))
4734, 46mpbiran 709 . 2 ((𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧))))
483, 21, 47sylanbrc 583 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cdif 3908  wss 3911  {csn 4585  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   + caddc 11047   · cmul 11049  cz 12505  cexp 14002  Basecbs 17155  s cress 17176  +gcplusg 17196  Grpcgrp 18841   GrpHom cghm 19120  mulGrpcmgp 20025  Ringcrg 20118  Unitcui 20240  fldccnfld 21240  ringczring 21332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-seq 13943  df-exp 14003  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-subg 19031  df-ghm 19121  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-subrng 20431  df-subrg 20455  df-drng 20616  df-cnfld 21241  df-zring 21333
This theorem is referenced by:  lgseisenlem4  27265
  Copyright terms: Public domain W3C validator