MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgninv Structured version   Visualization version   GIF version

Theorem psgninv 21580
Description: The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
psgninv.s 𝑆 = (SymGrp‘𝐷)
psgninv.n 𝑁 = (pmSgn‘𝐷)
psgninv.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
psgninv ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (𝑁𝐹))

Proof of Theorem psgninv
StepHypRef Expression
1 psgninv.s . . . . 5 𝑆 = (SymGrp‘𝐷)
2 psgninv.n . . . . 5 𝑁 = (pmSgn‘𝐷)
3 eqid 2726 . . . . 5 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
41, 2, 3psgnghm2 21579 . . . 4 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
5 psgninv.p . . . . 5 𝑃 = (Base‘𝑆)
6 eqid 2726 . . . . 5 (invg𝑆) = (invg𝑆)
7 eqid 2726 . . . . 5 (invg‘((mulGrp‘ℂfld) ↾s {1, -1})) = (invg‘((mulGrp‘ℂfld) ↾s {1, -1}))
85, 6, 7ghminv 19219 . . . 4 ((𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
94, 8sylan 578 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
101, 5, 6symginv 19402 . . . . 5 (𝐹𝑃 → ((invg𝑆)‘𝐹) = 𝐹)
1110adantl 480 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invg𝑆)‘𝐹) = 𝐹)
1211fveq2d 6907 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = (𝑁𝐹))
13 eqid 2726 . . . . . 6 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1413cnmsgnsubg 21575 . . . . 5 {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
153cnmsgnbas 21576 . . . . . . . 8 {1, -1} = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
165, 15ghmf 19216 . . . . . . 7 (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶{1, -1})
174, 16syl 17 . . . . . 6 (𝐷 ∈ Fin → 𝑁:𝑃⟶{1, -1})
1817ffvelcdmda 7100 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) ∈ {1, -1})
19 cnex 11241 . . . . . . . . 9 ℂ ∈ V
2019difexi 5337 . . . . . . . 8 (ℂ ∖ {0}) ∈ V
21 ax-1cn 11218 . . . . . . . . . 10 1 ∈ ℂ
22 ax-1ne0 11229 . . . . . . . . . 10 1 ≠ 0
23 eldifsn 4795 . . . . . . . . . 10 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0))
2421, 22, 23mpbir2an 709 . . . . . . . . 9 1 ∈ (ℂ ∖ {0})
25 neg1cn 12380 . . . . . . . . . 10 -1 ∈ ℂ
26 neg1ne0 12382 . . . . . . . . . 10 -1 ≠ 0
27 eldifsn 4795 . . . . . . . . . 10 (-1 ∈ (ℂ ∖ {0}) ↔ (-1 ∈ ℂ ∧ -1 ≠ 0))
2825, 26, 27mpbir2an 709 . . . . . . . . 9 -1 ∈ (ℂ ∖ {0})
29 prssi 4830 . . . . . . . . 9 ((1 ∈ (ℂ ∖ {0}) ∧ -1 ∈ (ℂ ∖ {0})) → {1, -1} ⊆ (ℂ ∖ {0}))
3024, 28, 29mp2an 690 . . . . . . . 8 {1, -1} ⊆ (ℂ ∖ {0})
31 ressabs 17265 . . . . . . . 8 (((ℂ ∖ {0}) ∈ V ∧ {1, -1} ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}))
3220, 30, 31mp2an 690 . . . . . . 7 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
3332eqcomi 2735 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1})
34 cnfldbas 21349 . . . . . . . 8 ℂ = (Base‘ℂfld)
35 cnfld0 21386 . . . . . . . 8 0 = (0g‘ℂfld)
36 cndrng 21392 . . . . . . . 8 fld ∈ DivRing
3734, 35, 36drngui 20715 . . . . . . 7 (ℂ ∖ {0}) = (Unit‘ℂfld)
38 eqid 2726 . . . . . . 7 (invr‘ℂfld) = (invr‘ℂfld)
3937, 13, 38invrfval 20373 . . . . . 6 (invr‘ℂfld) = (invg‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
4033, 39, 7subginv 19129 . . . . 5 (({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (𝑁𝐹) ∈ {1, -1}) → ((invr‘ℂfld)‘(𝑁𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
4114, 18, 40sylancr 585 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invr‘ℂfld)‘(𝑁𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
4230, 18sselid 3977 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) ∈ (ℂ ∖ {0}))
43 eldifsn 4795 . . . . . 6 ((𝑁𝐹) ∈ (ℂ ∖ {0}) ↔ ((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0))
4442, 43sylib 217 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0))
45 cnfldinv 21396 . . . . 5 (((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0) → ((invr‘ℂfld)‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
4644, 45syl 17 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invr‘ℂfld)‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
4741, 46eqtr3d 2768 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
489, 12, 473eqtr3d 2774 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (1 / (𝑁𝐹)))
49 fvex 6916 . . . . 5 (𝑁𝐹) ∈ V
5049elpr 4657 . . . 4 ((𝑁𝐹) ∈ {1, -1} ↔ ((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1))
51 1div1e1 11957 . . . . . 6 (1 / 1) = 1
52 oveq2 7434 . . . . . 6 ((𝑁𝐹) = 1 → (1 / (𝑁𝐹)) = (1 / 1))
53 id 22 . . . . . 6 ((𝑁𝐹) = 1 → (𝑁𝐹) = 1)
5451, 52, 533eqtr4a 2792 . . . . 5 ((𝑁𝐹) = 1 → (1 / (𝑁𝐹)) = (𝑁𝐹))
55 divneg2 11991 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
5621, 21, 22, 55mp3an 1458 . . . . . . 7 -(1 / 1) = (1 / -1)
5751negeqi 11505 . . . . . . 7 -(1 / 1) = -1
5856, 57eqtr3i 2756 . . . . . 6 (1 / -1) = -1
59 oveq2 7434 . . . . . 6 ((𝑁𝐹) = -1 → (1 / (𝑁𝐹)) = (1 / -1))
60 id 22 . . . . . 6 ((𝑁𝐹) = -1 → (𝑁𝐹) = -1)
6158, 59, 603eqtr4a 2792 . . . . 5 ((𝑁𝐹) = -1 → (1 / (𝑁𝐹)) = (𝑁𝐹))
6254, 61jaoi 855 . . . 4 (((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1) → (1 / (𝑁𝐹)) = (𝑁𝐹))
6350, 62sylbi 216 . . 3 ((𝑁𝐹) ∈ {1, -1} → (1 / (𝑁𝐹)) = (𝑁𝐹))
6418, 63syl 17 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (1 / (𝑁𝐹)) = (𝑁𝐹))
6548, 64eqtrd 2766 1 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845   = wceq 1534  wcel 2099  wne 2930  Vcvv 3462  cdif 3944  wss 3947  {csn 4633  {cpr 4635  ccnv 5683  wf 6552  cfv 6556  (class class class)co 7426  Fincfn 8976  cc 11158  0cc0 11160  1c1 11161  -cneg 11497   / cdiv 11923  Basecbs 17215  s cress 17244  invgcminusg 18931  SubGrpcsubg 19116   GrpHom cghm 19208  SymGrpcsymg 19366  pmSgncpsgn 19489  mulGrpcmgp 20119  invrcinvr 20371  fldccnfld 21345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-addf 11239  ax-mulf 11240
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-ot 4642  df-uni 4916  df-int 4957  df-iun 5005  df-iin 5006  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-tpos 8243  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-map 8859  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12599  df-z 12613  df-dec 12732  df-uz 12877  df-rp 13031  df-fz 13541  df-fzo 13684  df-seq 14024  df-exp 14084  df-hash 14350  df-word 14525  df-lsw 14573  df-concat 14581  df-s1 14606  df-substr 14651  df-pfx 14681  df-splice 14760  df-reverse 14769  df-s2 14859  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-mulr 17282  df-starv 17283  df-tset 17287  df-ple 17288  df-ds 17290  df-unif 17291  df-0g 17458  df-gsum 17459  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-mhm 18775  df-submnd 18776  df-efmnd 18861  df-grp 18933  df-minusg 18934  df-subg 19119  df-ghm 19209  df-gim 19255  df-oppg 19342  df-symg 19367  df-pmtr 19442  df-psgn 19491  df-cmn 19782  df-abl 19783  df-mgp 20120  df-rng 20138  df-ur 20167  df-ring 20220  df-cring 20221  df-oppr 20318  df-dvdsr 20341  df-unit 20342  df-invr 20372  df-dvr 20385  df-drng 20711  df-cnfld 21346
This theorem is referenced by:  zrhpsgninv  21583  evpmodpmf1o  21594  madjusmdetlem4  33647
  Copyright terms: Public domain W3C validator