MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgninv Structured version   Visualization version   GIF version

Theorem psgninv 21507
Description: The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
psgninv.s 𝑆 = (SymGrp‘𝐷)
psgninv.n 𝑁 = (pmSgn‘𝐷)
psgninv.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
psgninv ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (𝑁𝐹))

Proof of Theorem psgninv
StepHypRef Expression
1 psgninv.s . . . . 5 𝑆 = (SymGrp‘𝐷)
2 psgninv.n . . . . 5 𝑁 = (pmSgn‘𝐷)
3 eqid 2729 . . . . 5 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
41, 2, 3psgnghm2 21506 . . . 4 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
5 psgninv.p . . . . 5 𝑃 = (Base‘𝑆)
6 eqid 2729 . . . . 5 (invg𝑆) = (invg𝑆)
7 eqid 2729 . . . . 5 (invg‘((mulGrp‘ℂfld) ↾s {1, -1})) = (invg‘((mulGrp‘ℂfld) ↾s {1, -1}))
85, 6, 7ghminv 19120 . . . 4 ((𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
94, 8sylan 580 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
101, 5, 6symginv 19299 . . . . 5 (𝐹𝑃 → ((invg𝑆)‘𝐹) = 𝐹)
1110adantl 481 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invg𝑆)‘𝐹) = 𝐹)
1211fveq2d 6830 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = (𝑁𝐹))
13 eqid 2729 . . . . . 6 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1413cnmsgnsubg 21502 . . . . 5 {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
153cnmsgnbas 21503 . . . . . . . 8 {1, -1} = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
165, 15ghmf 19117 . . . . . . 7 (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶{1, -1})
174, 16syl 17 . . . . . 6 (𝐷 ∈ Fin → 𝑁:𝑃⟶{1, -1})
1817ffvelcdmda 7022 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) ∈ {1, -1})
19 cnex 11109 . . . . . . . . 9 ℂ ∈ V
2019difexi 5272 . . . . . . . 8 (ℂ ∖ {0}) ∈ V
21 ax-1cn 11086 . . . . . . . . . 10 1 ∈ ℂ
22 ax-1ne0 11097 . . . . . . . . . 10 1 ≠ 0
23 eldifsn 4740 . . . . . . . . . 10 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0))
2421, 22, 23mpbir2an 711 . . . . . . . . 9 1 ∈ (ℂ ∖ {0})
25 neg1cn 12131 . . . . . . . . . 10 -1 ∈ ℂ
26 neg1ne0 12133 . . . . . . . . . 10 -1 ≠ 0
27 eldifsn 4740 . . . . . . . . . 10 (-1 ∈ (ℂ ∖ {0}) ↔ (-1 ∈ ℂ ∧ -1 ≠ 0))
2825, 26, 27mpbir2an 711 . . . . . . . . 9 -1 ∈ (ℂ ∖ {0})
29 prssi 4775 . . . . . . . . 9 ((1 ∈ (ℂ ∖ {0}) ∧ -1 ∈ (ℂ ∖ {0})) → {1, -1} ⊆ (ℂ ∖ {0}))
3024, 28, 29mp2an 692 . . . . . . . 8 {1, -1} ⊆ (ℂ ∖ {0})
31 ressabs 17177 . . . . . . . 8 (((ℂ ∖ {0}) ∈ V ∧ {1, -1} ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}))
3220, 30, 31mp2an 692 . . . . . . 7 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
3332eqcomi 2738 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1})
34 cnfldbas 21283 . . . . . . . 8 ℂ = (Base‘ℂfld)
35 cnfld0 21317 . . . . . . . 8 0 = (0g‘ℂfld)
36 cndrng 21323 . . . . . . . 8 fld ∈ DivRing
3734, 35, 36drngui 20638 . . . . . . 7 (ℂ ∖ {0}) = (Unit‘ℂfld)
38 eqid 2729 . . . . . . 7 (invr‘ℂfld) = (invr‘ℂfld)
3937, 13, 38invrfval 20292 . . . . . 6 (invr‘ℂfld) = (invg‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
4033, 39, 7subginv 19030 . . . . 5 (({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (𝑁𝐹) ∈ {1, -1}) → ((invr‘ℂfld)‘(𝑁𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
4114, 18, 40sylancr 587 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invr‘ℂfld)‘(𝑁𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
4230, 18sselid 3935 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) ∈ (ℂ ∖ {0}))
43 eldifsn 4740 . . . . . 6 ((𝑁𝐹) ∈ (ℂ ∖ {0}) ↔ ((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0))
4442, 43sylib 218 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0))
45 cnfldinv 21327 . . . . 5 (((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0) → ((invr‘ℂfld)‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
4644, 45syl 17 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invr‘ℂfld)‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
4741, 46eqtr3d 2766 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
489, 12, 473eqtr3d 2772 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (1 / (𝑁𝐹)))
49 fvex 6839 . . . . 5 (𝑁𝐹) ∈ V
5049elpr 4604 . . . 4 ((𝑁𝐹) ∈ {1, -1} ↔ ((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1))
51 1div1e1 11833 . . . . . 6 (1 / 1) = 1
52 oveq2 7361 . . . . . 6 ((𝑁𝐹) = 1 → (1 / (𝑁𝐹)) = (1 / 1))
53 id 22 . . . . . 6 ((𝑁𝐹) = 1 → (𝑁𝐹) = 1)
5451, 52, 533eqtr4a 2790 . . . . 5 ((𝑁𝐹) = 1 → (1 / (𝑁𝐹)) = (𝑁𝐹))
55 divneg2 11866 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
5621, 21, 22, 55mp3an 1463 . . . . . . 7 -(1 / 1) = (1 / -1)
5751negeqi 11374 . . . . . . 7 -(1 / 1) = -1
5856, 57eqtr3i 2754 . . . . . 6 (1 / -1) = -1
59 oveq2 7361 . . . . . 6 ((𝑁𝐹) = -1 → (1 / (𝑁𝐹)) = (1 / -1))
60 id 22 . . . . . 6 ((𝑁𝐹) = -1 → (𝑁𝐹) = -1)
6158, 59, 603eqtr4a 2790 . . . . 5 ((𝑁𝐹) = -1 → (1 / (𝑁𝐹)) = (𝑁𝐹))
6254, 61jaoi 857 . . . 4 (((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1) → (1 / (𝑁𝐹)) = (𝑁𝐹))
6350, 62sylbi 217 . . 3 ((𝑁𝐹) ∈ {1, -1} → (1 / (𝑁𝐹)) = (𝑁𝐹))
6418, 63syl 17 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (1 / (𝑁𝐹)) = (𝑁𝐹))
6548, 64eqtrd 2764 1 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  cdif 3902  wss 3905  {csn 4579  {cpr 4581  ccnv 5622  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029  -cneg 11366   / cdiv 11795  Basecbs 17138  s cress 17159  invgcminusg 18831  SubGrpcsubg 19017   GrpHom cghm 19109  SymGrpcsymg 19266  pmSgncpsgn 19386  mulGrpcmgp 20043  invrcinvr 20290  fldccnfld 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-splice 14674  df-reverse 14683  df-s2 14773  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-efmnd 18761  df-grp 18833  df-minusg 18834  df-subg 19020  df-ghm 19110  df-gim 19156  df-oppg 19243  df-symg 19267  df-pmtr 19339  df-psgn 19388  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-drng 20634  df-cnfld 21280
This theorem is referenced by:  zrhpsgninv  21510  evpmodpmf1o  21521  madjusmdetlem4  33799
  Copyright terms: Public domain W3C validator