MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgninv Structured version   Visualization version   GIF version

Theorem psgninv 21467
Description: The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
psgninv.s 𝑆 = (SymGrp‘𝐷)
psgninv.n 𝑁 = (pmSgn‘𝐷)
psgninv.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
psgninv ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (𝑁𝐹))

Proof of Theorem psgninv
StepHypRef Expression
1 psgninv.s . . . . 5 𝑆 = (SymGrp‘𝐷)
2 psgninv.n . . . . 5 𝑁 = (pmSgn‘𝐷)
3 eqid 2729 . . . . 5 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
41, 2, 3psgnghm2 21466 . . . 4 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
5 psgninv.p . . . . 5 𝑃 = (Base‘𝑆)
6 eqid 2729 . . . . 5 (invg𝑆) = (invg𝑆)
7 eqid 2729 . . . . 5 (invg‘((mulGrp‘ℂfld) ↾s {1, -1})) = (invg‘((mulGrp‘ℂfld) ↾s {1, -1}))
85, 6, 7ghminv 19131 . . . 4 ((𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
94, 8sylan 580 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
101, 5, 6symginv 19308 . . . . 5 (𝐹𝑃 → ((invg𝑆)‘𝐹) = 𝐹)
1110adantl 481 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invg𝑆)‘𝐹) = 𝐹)
1211fveq2d 6844 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = (𝑁𝐹))
13 eqid 2729 . . . . . 6 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1413cnmsgnsubg 21462 . . . . 5 {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
153cnmsgnbas 21463 . . . . . . . 8 {1, -1} = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
165, 15ghmf 19128 . . . . . . 7 (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶{1, -1})
174, 16syl 17 . . . . . 6 (𝐷 ∈ Fin → 𝑁:𝑃⟶{1, -1})
1817ffvelcdmda 7038 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) ∈ {1, -1})
19 cnex 11125 . . . . . . . . 9 ℂ ∈ V
2019difexi 5280 . . . . . . . 8 (ℂ ∖ {0}) ∈ V
21 ax-1cn 11102 . . . . . . . . . 10 1 ∈ ℂ
22 ax-1ne0 11113 . . . . . . . . . 10 1 ≠ 0
23 eldifsn 4746 . . . . . . . . . 10 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0))
2421, 22, 23mpbir2an 711 . . . . . . . . 9 1 ∈ (ℂ ∖ {0})
25 neg1cn 12147 . . . . . . . . . 10 -1 ∈ ℂ
26 neg1ne0 12149 . . . . . . . . . 10 -1 ≠ 0
27 eldifsn 4746 . . . . . . . . . 10 (-1 ∈ (ℂ ∖ {0}) ↔ (-1 ∈ ℂ ∧ -1 ≠ 0))
2825, 26, 27mpbir2an 711 . . . . . . . . 9 -1 ∈ (ℂ ∖ {0})
29 prssi 4781 . . . . . . . . 9 ((1 ∈ (ℂ ∖ {0}) ∧ -1 ∈ (ℂ ∖ {0})) → {1, -1} ⊆ (ℂ ∖ {0}))
3024, 28, 29mp2an 692 . . . . . . . 8 {1, -1} ⊆ (ℂ ∖ {0})
31 ressabs 17194 . . . . . . . 8 (((ℂ ∖ {0}) ∈ V ∧ {1, -1} ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}))
3220, 30, 31mp2an 692 . . . . . . 7 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
3332eqcomi 2738 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1})
34 cnfldbas 21244 . . . . . . . 8 ℂ = (Base‘ℂfld)
35 cnfld0 21280 . . . . . . . 8 0 = (0g‘ℂfld)
36 cndrng 21286 . . . . . . . 8 fld ∈ DivRing
3734, 35, 36drngui 20620 . . . . . . 7 (ℂ ∖ {0}) = (Unit‘ℂfld)
38 eqid 2729 . . . . . . 7 (invr‘ℂfld) = (invr‘ℂfld)
3937, 13, 38invrfval 20274 . . . . . 6 (invr‘ℂfld) = (invg‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
4033, 39, 7subginv 19041 . . . . 5 (({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (𝑁𝐹) ∈ {1, -1}) → ((invr‘ℂfld)‘(𝑁𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
4114, 18, 40sylancr 587 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invr‘ℂfld)‘(𝑁𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
4230, 18sselid 3941 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) ∈ (ℂ ∖ {0}))
43 eldifsn 4746 . . . . . 6 ((𝑁𝐹) ∈ (ℂ ∖ {0}) ↔ ((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0))
4442, 43sylib 218 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0))
45 cnfldinv 21290 . . . . 5 (((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0) → ((invr‘ℂfld)‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
4644, 45syl 17 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invr‘ℂfld)‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
4741, 46eqtr3d 2766 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
489, 12, 473eqtr3d 2772 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (1 / (𝑁𝐹)))
49 fvex 6853 . . . . 5 (𝑁𝐹) ∈ V
5049elpr 4610 . . . 4 ((𝑁𝐹) ∈ {1, -1} ↔ ((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1))
51 1div1e1 11849 . . . . . 6 (1 / 1) = 1
52 oveq2 7377 . . . . . 6 ((𝑁𝐹) = 1 → (1 / (𝑁𝐹)) = (1 / 1))
53 id 22 . . . . . 6 ((𝑁𝐹) = 1 → (𝑁𝐹) = 1)
5451, 52, 533eqtr4a 2790 . . . . 5 ((𝑁𝐹) = 1 → (1 / (𝑁𝐹)) = (𝑁𝐹))
55 divneg2 11882 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
5621, 21, 22, 55mp3an 1463 . . . . . . 7 -(1 / 1) = (1 / -1)
5751negeqi 11390 . . . . . . 7 -(1 / 1) = -1
5856, 57eqtr3i 2754 . . . . . 6 (1 / -1) = -1
59 oveq2 7377 . . . . . 6 ((𝑁𝐹) = -1 → (1 / (𝑁𝐹)) = (1 / -1))
60 id 22 . . . . . 6 ((𝑁𝐹) = -1 → (𝑁𝐹) = -1)
6158, 59, 603eqtr4a 2790 . . . . 5 ((𝑁𝐹) = -1 → (1 / (𝑁𝐹)) = (𝑁𝐹))
6254, 61jaoi 857 . . . 4 (((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1) → (1 / (𝑁𝐹)) = (𝑁𝐹))
6350, 62sylbi 217 . . 3 ((𝑁𝐹) ∈ {1, -1} → (1 / (𝑁𝐹)) = (𝑁𝐹))
6418, 63syl 17 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (1 / (𝑁𝐹)) = (𝑁𝐹))
6548, 64eqtrd 2764 1 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  wss 3911  {csn 4585  {cpr 4587  ccnv 5630  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  0cc0 11044  1c1 11045  -cneg 11382   / cdiv 11811  Basecbs 17155  s cress 17176  invgcminusg 18842  SubGrpcsubg 19028   GrpHom cghm 19120  SymGrpcsymg 19275  pmSgncpsgn 19395  mulGrpcmgp 20025  invrcinvr 20272  fldccnfld 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-gsum 17381  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-minusg 18845  df-subg 19031  df-ghm 19121  df-gim 19167  df-oppg 19254  df-symg 19276  df-pmtr 19348  df-psgn 19397  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-drng 20616  df-cnfld 21241
This theorem is referenced by:  zrhpsgninv  21470  evpmodpmf1o  21481  madjusmdetlem4  33793
  Copyright terms: Public domain W3C validator