| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngunit | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| drngunit | ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isdrng.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | isdrng.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20649 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑈 = (𝐵 ∖ { 0 })) |
| 6 | 5 | eleq2d 2815 | . 2 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (𝐵 ∖ { 0 }))) |
| 7 | eldifsn 4753 | . 2 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
| 8 | 6, 7 | bitrdi 287 | 1 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {csn 4592 ‘cfv 6514 Basecbs 17186 0gc0g 17409 Ringcrg 20149 Unitcui 20271 DivRingcdr 20645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-drng 20647 |
| This theorem is referenced by: drngunz 20663 drnginvrcl 20669 drnginvrn0 20670 drnginvrl 20672 drnginvrr 20673 issubdrg 20696 sdrgunit 20712 abvdiv 20745 qsssubdrg 21350 redvr 21533 drnguc1p 26086 lgseisenlem3 27295 sdrgdvcl 33256 sdrginvcl 33257 ornglmullt 33292 orngrmullt 33293 isarchiofld 33302 1arithufd 33526 ply1asclunit 33550 ply1dg1rt 33555 qqhval2lem 33978 qqhf 33983 matunitlindf 37619 fldhmf1 42085 lincreslvec3 48475 isldepslvec2 48478 |
| Copyright terms: Public domain | W3C validator |