| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngunit | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| drngunit | ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isdrng.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | isdrng.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20650 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑈 = (𝐵 ∖ { 0 })) |
| 6 | 5 | eleq2d 2819 | . 2 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (𝐵 ∖ { 0 }))) |
| 7 | eldifsn 4737 | . 2 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
| 8 | 6, 7 | bitrdi 287 | 1 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 {csn 4575 ‘cfv 6486 Basecbs 17122 0gc0g 17345 Ringcrg 20153 Unitcui 20275 DivRingcdr 20646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-drng 20648 |
| This theorem is referenced by: drngunz 20664 drnginvrcl 20670 drnginvrn0 20671 drnginvrl 20673 drnginvrr 20674 issubdrg 20697 sdrgunit 20713 abvdiv 20746 ornglmullt 20786 orngrmullt 20787 qsssubdrg 21365 redvr 21556 drnguc1p 26107 lgseisenlem3 27316 fxpsdrg 33151 isarchiofld 33175 sdrgdvcl 33272 sdrginvcl 33273 1arithufd 33520 ply1asclunit 33544 ply1dg1rt 33550 qqhval2lem 34015 qqhf 34020 matunitlindf 37679 fldhmf1 42204 lincreslvec3 48608 isldepslvec2 48611 |
| Copyright terms: Public domain | W3C validator |