MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngunit Structured version   Visualization version   GIF version

Theorem drngunit 20650
Description: Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng.b 𝐵 = (Base‘𝑅)
isdrng.u 𝑈 = (Unit‘𝑅)
isdrng.z 0 = (0g𝑅)
Assertion
Ref Expression
drngunit (𝑅 ∈ DivRing → (𝑋𝑈 ↔ (𝑋𝐵𝑋0 )))

Proof of Theorem drngunit
StepHypRef Expression
1 isdrng.b . . . . 5 𝐵 = (Base‘𝑅)
2 isdrng.u . . . . 5 𝑈 = (Unit‘𝑅)
3 isdrng.z . . . . 5 0 = (0g𝑅)
41, 2, 3isdrng 20649 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
54simprbi 496 . . 3 (𝑅 ∈ DivRing → 𝑈 = (𝐵 ∖ { 0 }))
65eleq2d 2815 . 2 (𝑅 ∈ DivRing → (𝑋𝑈𝑋 ∈ (𝐵 ∖ { 0 })))
7 eldifsn 4753 . 2 (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋𝐵𝑋0 ))
86, 7bitrdi 287 1 (𝑅 ∈ DivRing → (𝑋𝑈 ↔ (𝑋𝐵𝑋0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  {csn 4592  cfv 6514  Basecbs 17186  0gc0g 17409  Ringcrg 20149  Unitcui 20271  DivRingcdr 20645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-drng 20647
This theorem is referenced by:  drngunz  20663  drnginvrcl  20669  drnginvrn0  20670  drnginvrl  20672  drnginvrr  20673  issubdrg  20696  sdrgunit  20712  abvdiv  20745  qsssubdrg  21350  redvr  21533  drnguc1p  26086  lgseisenlem3  27295  sdrgdvcl  33256  sdrginvcl  33257  ornglmullt  33292  orngrmullt  33293  isarchiofld  33302  1arithufd  33526  ply1asclunit  33550  ply1dg1rt  33555  qqhval2lem  33978  qqhf  33983  matunitlindf  37619  fldhmf1  42085  lincreslvec3  48475  isldepslvec2  48478
  Copyright terms: Public domain W3C validator