| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngunit | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| drngunit | ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isdrng.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | isdrng.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20636 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑈 = (𝐵 ∖ { 0 })) |
| 6 | 5 | eleq2d 2814 | . 2 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (𝐵 ∖ { 0 }))) |
| 7 | eldifsn 4740 | . 2 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
| 8 | 6, 7 | bitrdi 287 | 1 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 {csn 4579 ‘cfv 6486 Basecbs 17138 0gc0g 17361 Ringcrg 20136 Unitcui 20258 DivRingcdr 20632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-drng 20634 |
| This theorem is referenced by: drngunz 20650 drnginvrcl 20656 drnginvrn0 20657 drnginvrl 20659 drnginvrr 20660 issubdrg 20683 sdrgunit 20699 abvdiv 20732 ornglmullt 20772 orngrmullt 20773 qsssubdrg 21351 redvr 21542 drnguc1p 26095 lgseisenlem3 27304 fxpsdrg 33130 isarchiofld 33154 sdrgdvcl 33251 sdrginvcl 33252 1arithufd 33498 ply1asclunit 33522 ply1dg1rt 33527 qqhval2lem 33950 qqhf 33955 matunitlindf 37600 fldhmf1 42066 lincreslvec3 48471 isldepslvec2 48474 |
| Copyright terms: Public domain | W3C validator |