Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drngunit | Structured version Visualization version GIF version |
Description: Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
isdrng.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
drngunit | ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isdrng.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | isdrng.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | isdrng 19910 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑈 = (𝐵 ∖ { 0 })) |
6 | 5 | eleq2d 2824 | . 2 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (𝐵 ∖ { 0 }))) |
7 | eldifsn 4717 | . 2 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
8 | 6, 7 | bitrdi 286 | 1 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {csn 4558 ‘cfv 6418 Basecbs 16840 0gc0g 17067 Ringcrg 19698 Unitcui 19796 DivRingcdr 19906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-drng 19908 |
This theorem is referenced by: drngunz 19921 drnginvrcl 19923 drnginvrn0 19924 drnginvrl 19925 drnginvrr 19926 issubdrg 19964 abvdiv 20012 qsssubdrg 20569 redvr 20734 drnguc1p 25240 lgseisenlem3 26430 ornglmullt 31408 orngrmullt 31409 isarchiofld 31418 qqhval2lem 31831 qqhf 31836 matunitlindf 35702 lincreslvec3 45711 isldepslvec2 45714 |
Copyright terms: Public domain | W3C validator |