Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drngunit | Structured version Visualization version GIF version |
Description: Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
isdrng.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
drngunit | ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isdrng.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | isdrng.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | isdrng 19995 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
5 | 4 | simprbi 497 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑈 = (𝐵 ∖ { 0 })) |
6 | 5 | eleq2d 2824 | . 2 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (𝐵 ∖ { 0 }))) |
7 | eldifsn 4720 | . 2 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
8 | 6, 7 | bitrdi 287 | 1 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 {csn 4561 ‘cfv 6433 Basecbs 16912 0gc0g 17150 Ringcrg 19783 Unitcui 19881 DivRingcdr 19991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-drng 19993 |
This theorem is referenced by: drngunz 20006 drnginvrcl 20008 drnginvrn0 20009 drnginvrl 20010 drnginvrr 20011 issubdrg 20049 abvdiv 20097 qsssubdrg 20657 redvr 20822 drnguc1p 25335 lgseisenlem3 26525 ornglmullt 31506 orngrmullt 31507 isarchiofld 31516 qqhval2lem 31931 qqhf 31936 matunitlindf 35775 lincreslvec3 45823 isldepslvec2 45826 |
Copyright terms: Public domain | W3C validator |