MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngunit Structured version   Visualization version   GIF version

Theorem drngunit 20637
Description: Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng.b 𝐵 = (Base‘𝑅)
isdrng.u 𝑈 = (Unit‘𝑅)
isdrng.z 0 = (0g𝑅)
Assertion
Ref Expression
drngunit (𝑅 ∈ DivRing → (𝑋𝑈 ↔ (𝑋𝐵𝑋0 )))

Proof of Theorem drngunit
StepHypRef Expression
1 isdrng.b . . . . 5 𝐵 = (Base‘𝑅)
2 isdrng.u . . . . 5 𝑈 = (Unit‘𝑅)
3 isdrng.z . . . . 5 0 = (0g𝑅)
41, 2, 3isdrng 20636 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
54simprbi 496 . . 3 (𝑅 ∈ DivRing → 𝑈 = (𝐵 ∖ { 0 }))
65eleq2d 2814 . 2 (𝑅 ∈ DivRing → (𝑋𝑈𝑋 ∈ (𝐵 ∖ { 0 })))
7 eldifsn 4740 . 2 (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋𝐵𝑋0 ))
86, 7bitrdi 287 1 (𝑅 ∈ DivRing → (𝑋𝑈 ↔ (𝑋𝐵𝑋0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3902  {csn 4579  cfv 6486  Basecbs 17138  0gc0g 17361  Ringcrg 20136  Unitcui 20258  DivRingcdr 20632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-drng 20634
This theorem is referenced by:  drngunz  20650  drnginvrcl  20656  drnginvrn0  20657  drnginvrl  20659  drnginvrr  20660  issubdrg  20683  sdrgunit  20699  abvdiv  20732  ornglmullt  20772  orngrmullt  20773  qsssubdrg  21351  redvr  21542  drnguc1p  26095  lgseisenlem3  27304  fxpsdrg  33130  isarchiofld  33154  sdrgdvcl  33251  sdrginvcl  33252  1arithufd  33498  ply1asclunit  33522  ply1dg1rt  33527  qqhval2lem  33950  qqhf  33955  matunitlindf  37600  fldhmf1  42066  lincreslvec3  48471  isldepslvec2  48474
  Copyright terms: Public domain W3C validator