![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngunit | Structured version Visualization version GIF version |
Description: Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
isdrng.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
drngunit | ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isdrng.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | isdrng.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | isdrng 20755 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑈 = (𝐵 ∖ { 0 })) |
6 | 5 | eleq2d 2830 | . 2 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (𝐵 ∖ { 0 }))) |
7 | eldifsn 4811 | . 2 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
8 | 6, 7 | bitrdi 287 | 1 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 ‘cfv 6573 Basecbs 17258 0gc0g 17499 Ringcrg 20260 Unitcui 20381 DivRingcdr 20751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-drng 20753 |
This theorem is referenced by: drngunz 20769 drnginvrcl 20775 drnginvrn0 20776 drnginvrl 20778 drnginvrr 20779 issubdrg 20803 sdrgunit 20819 abvdiv 20852 qsssubdrg 21467 redvr 21658 drnguc1p 26233 lgseisenlem3 27439 sdrgdvcl 33266 sdrginvcl 33267 ornglmullt 33302 orngrmullt 33303 isarchiofld 33312 1arithufd 33541 ply1asclunit 33564 ply1dg1rt 33569 qqhval2lem 33927 qqhf 33932 matunitlindf 37578 fldhmf1 42047 lincreslvec3 48211 isldepslvec2 48214 |
Copyright terms: Public domain | W3C validator |