| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngunit | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| isdrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdrng.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isdrng.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| drngunit | ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isdrng.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | isdrng.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdrng 20693 | . . . 4 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑈 = (𝐵 ∖ { 0 })) |
| 6 | 5 | eleq2d 2820 | . 2 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (𝐵 ∖ { 0 }))) |
| 7 | eldifsn 4762 | . 2 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
| 8 | 6, 7 | bitrdi 287 | 1 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 ‘cfv 6531 Basecbs 17228 0gc0g 17453 Ringcrg 20193 Unitcui 20315 DivRingcdr 20689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-drng 20691 |
| This theorem is referenced by: drngunz 20707 drnginvrcl 20713 drnginvrn0 20714 drnginvrl 20716 drnginvrr 20717 issubdrg 20740 sdrgunit 20756 abvdiv 20789 qsssubdrg 21394 redvr 21577 drnguc1p 26131 lgseisenlem3 27340 sdrgdvcl 33293 sdrginvcl 33294 ornglmullt 33329 orngrmullt 33330 isarchiofld 33339 1arithufd 33563 ply1asclunit 33587 ply1dg1rt 33592 qqhval2lem 34012 qqhf 34017 matunitlindf 37642 fldhmf1 42103 lincreslvec3 48458 isldepslvec2 48461 |
| Copyright terms: Public domain | W3C validator |