MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngunit Structured version   Visualization version   GIF version

Theorem drngunit 19501
Description: Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
isdrng.b 𝐵 = (Base‘𝑅)
isdrng.u 𝑈 = (Unit‘𝑅)
isdrng.z 0 = (0g𝑅)
Assertion
Ref Expression
drngunit (𝑅 ∈ DivRing → (𝑋𝑈 ↔ (𝑋𝐵𝑋0 )))

Proof of Theorem drngunit
StepHypRef Expression
1 isdrng.b . . . . 5 𝐵 = (Base‘𝑅)
2 isdrng.u . . . . 5 𝑈 = (Unit‘𝑅)
3 isdrng.z . . . . 5 0 = (0g𝑅)
41, 2, 3isdrng 19500 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
54simprbi 499 . . 3 (𝑅 ∈ DivRing → 𝑈 = (𝐵 ∖ { 0 }))
65eleq2d 2898 . 2 (𝑅 ∈ DivRing → (𝑋𝑈𝑋 ∈ (𝐵 ∖ { 0 })))
7 eldifsn 4712 . 2 (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋𝐵𝑋0 ))
86, 7syl6bb 289 1 (𝑅 ∈ DivRing → (𝑋𝑈 ↔ (𝑋𝐵𝑋0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  cdif 3932  {csn 4560  cfv 6349  Basecbs 16477  0gc0g 16707  Ringcrg 19291  Unitcui 19383  DivRingcdr 19496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-iota 6308  df-fv 6357  df-drng 19498
This theorem is referenced by:  drngunz  19511  drnginvrcl  19513  drnginvrn0  19514  drnginvrl  19515  drnginvrr  19516  issubdrg  19554  abvdiv  19602  qsssubdrg  20598  redvr  20755  drnguc1p  24758  lgseisenlem3  25947  ornglmullt  30875  orngrmullt  30876  isarchiofld  30885  qqhval2lem  31217  qqhf  31222  matunitlindf  34884  lincreslvec3  44531  isldepslvec2  44534
  Copyright terms: Public domain W3C validator