| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrghm | Structured version Visualization version GIF version | ||
| Description: A Dirichlet character restricted to the unit group of ℤ/nℤ is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrghm.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrghm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrghm.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrghm.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchrghm.h | ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
| dchrghm.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| dchrghm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| dchrghm | ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrghm.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
| 2 | dchrghm.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 3 | dchrghm.b | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
| 4 | 1, 2, 3 | dchrmhm 27172 | . . . . 5 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
| 5 | dchrghm.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 6 | 4, 5 | sselid 3930 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
| 7 | 1, 3 | dchrrcl 27171 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | 8 | nnnn0d 12434 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 10 | 2 | zncrng 21474 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 12 | crngring 20156 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 14 | dchrghm.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑍) | |
| 15 | eqid 2730 | . . . . . 6 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
| 16 | 14, 15 | unitsubm 20297 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) |
| 17 | 13, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) |
| 18 | dchrghm.h | . . . . 5 ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) | |
| 19 | 18 | resmhm 18720 | . . . 4 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld))) |
| 20 | 6, 17, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld))) |
| 21 | cnring 21320 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 22 | cnfldbas 21288 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 23 | cnfld0 21322 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
| 24 | cndrng 21328 | . . . . . . 7 ⊢ ℂfld ∈ DivRing | |
| 25 | 22, 23, 24 | drngui 20643 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
| 26 | eqid 2730 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 27 | 25, 26 | unitsubm 20297 | . . . . 5 ⊢ (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) |
| 28 | 21, 27 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) |
| 29 | df-ima 5627 | . . . . 5 ⊢ (𝑋 “ 𝑈) = ran (𝑋 ↾ 𝑈) | |
| 30 | eqid 2730 | . . . . . . . . . 10 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 31 | 1, 2, 3, 30, 5 | dchrf 27173 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
| 32 | 30, 14 | unitss 20287 | . . . . . . . . . 10 ⊢ 𝑈 ⊆ (Base‘𝑍) |
| 33 | 32 | sseli 3928 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑍)) |
| 34 | ffvelcdm 7009 | . . . . . . . . 9 ⊢ ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → (𝑋‘𝑥) ∈ ℂ) | |
| 35 | 31, 33, 34 | syl2an 596 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ∈ ℂ) |
| 36 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
| 37 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑋 ∈ 𝐷) |
| 38 | 33 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑍)) |
| 39 | 1, 2, 3, 30, 14, 37, 38 | dchrn0 27181 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ((𝑋‘𝑥) ≠ 0 ↔ 𝑥 ∈ 𝑈)) |
| 40 | 36, 39 | mpbird 257 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ≠ 0) |
| 41 | eldifsn 4736 | . . . . . . . 8 ⊢ ((𝑋‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝑋‘𝑥) ∈ ℂ ∧ (𝑋‘𝑥) ≠ 0)) | |
| 42 | 35, 40, 41 | sylanbrc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ∈ (ℂ ∖ {0})) |
| 43 | 42 | ralrimiva 3122 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0})) |
| 44 | 31 | ffund 6651 | . . . . . . 7 ⊢ (𝜑 → Fun 𝑋) |
| 45 | 31 | fdmd 6657 | . . . . . . . 8 ⊢ (𝜑 → dom 𝑋 = (Base‘𝑍)) |
| 46 | 32, 45 | sseqtrrid 3976 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ dom 𝑋) |
| 47 | funimass4 6881 | . . . . . . 7 ⊢ ((Fun 𝑋 ∧ 𝑈 ⊆ dom 𝑋) → ((𝑋 “ 𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0}))) | |
| 48 | 44, 46, 47 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝑋 “ 𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0}))) |
| 49 | 43, 48 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝑋 “ 𝑈) ⊆ (ℂ ∖ {0})) |
| 50 | 29, 49 | eqsstrrid 3972 | . . . 4 ⊢ (𝜑 → ran (𝑋 ↾ 𝑈) ⊆ (ℂ ∖ {0})) |
| 51 | dchrghm.m | . . . . 5 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 52 | 51 | resmhm2b 18722 | . . . 4 ⊢ (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑋 ↾ 𝑈) ⊆ (ℂ ∖ {0})) → ((𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀))) |
| 53 | 28, 50, 52 | sylancr 587 | . . 3 ⊢ (𝜑 → ((𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀))) |
| 54 | 20, 53 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀)) |
| 55 | 14, 18 | unitgrp 20294 | . . . 4 ⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
| 56 | 13, 55 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Grp) |
| 57 | 51 | cnmgpabl 21358 | . . . 4 ⊢ 𝑀 ∈ Abel |
| 58 | ablgrp 19690 | . . . 4 ⊢ (𝑀 ∈ Abel → 𝑀 ∈ Grp) | |
| 59 | 57, 58 | ax-mp 5 | . . 3 ⊢ 𝑀 ∈ Grp |
| 60 | ghmmhmb 19132 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀)) | |
| 61 | 56, 59, 60 | sylancl 586 | . 2 ⊢ (𝜑 → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀)) |
| 62 | 54, 61 | eleqtrrd 2832 | 1 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ∖ cdif 3897 ⊆ wss 3900 {csn 4574 dom cdm 5614 ran crn 5615 ↾ cres 5616 “ cima 5617 Fun wfun 6471 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 0cc0 10998 ℕcn 12117 ℕ0cn0 12373 Basecbs 17112 ↾s cress 17133 MndHom cmhm 18681 SubMndcsubmnd 18682 Grpcgrp 18838 GrpHom cghm 19117 Abelcabl 19686 mulGrpcmgp 20051 Ringcrg 20144 CRingccrg 20145 Unitcui 20266 ℂfldccnfld 21284 ℤ/nℤczn 21432 DChrcdchr 27163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-0g 17337 df-imas 17404 df-qus 17405 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-nsg 19029 df-eqg 19030 df-ghm 19118 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-dvr 20312 df-subrng 20454 df-subrg 20478 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-sra 21100 df-rgmod 21101 df-lidl 21138 df-rsp 21139 df-2idl 21180 df-cnfld 21285 df-zring 21377 df-zn 21436 df-dchr 27164 |
| This theorem is referenced by: dchrabs 27191 sum2dchr 27205 |
| Copyright terms: Public domain | W3C validator |