MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrghm Structured version   Visualization version   GIF version

Theorem dchrghm 27301
Description: A Dirichlet character restricted to the unit group of ℤ/n is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
dchrghm.g 𝐺 = (DChr‘𝑁)
dchrghm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrghm.b 𝐷 = (Base‘𝐺)
dchrghm.u 𝑈 = (Unit‘𝑍)
dchrghm.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrghm.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
dchrghm.x (𝜑𝑋𝐷)
Assertion
Ref Expression
dchrghm (𝜑 → (𝑋𝑈) ∈ (𝐻 GrpHom 𝑀))

Proof of Theorem dchrghm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dchrghm.g . . . . . 6 𝐺 = (DChr‘𝑁)
2 dchrghm.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrghm.b . . . . . 6 𝐷 = (Base‘𝐺)
41, 2, 3dchrmhm 27286 . . . . 5 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
5 dchrghm.x . . . . 5 (𝜑𝑋𝐷)
64, 5sselid 3980 . . . 4 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
71, 3dchrrcl 27285 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
85, 7syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
98nnnn0d 12589 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
102zncrng 21564 . . . . . . 7 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
119, 10syl 17 . . . . . 6 (𝜑𝑍 ∈ CRing)
12 crngring 20243 . . . . . 6 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ Ring)
14 dchrghm.u . . . . . 6 𝑈 = (Unit‘𝑍)
15 eqid 2736 . . . . . 6 (mulGrp‘𝑍) = (mulGrp‘𝑍)
1614, 15unitsubm 20387 . . . . 5 (𝑍 ∈ Ring → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍)))
1713, 16syl 17 . . . 4 (𝜑𝑈 ∈ (SubMnd‘(mulGrp‘𝑍)))
18 dchrghm.h . . . . 5 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
1918resmhm 18834 . . . 4 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) → (𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)))
206, 17, 19syl2anc 584 . . 3 (𝜑 → (𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)))
21 cnring 21404 . . . . 5 fld ∈ Ring
22 cnfldbas 21369 . . . . . . 7 ℂ = (Base‘ℂfld)
23 cnfld0 21406 . . . . . . 7 0 = (0g‘ℂfld)
24 cndrng 21412 . . . . . . 7 fld ∈ DivRing
2522, 23, 24drngui 20736 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
26 eqid 2736 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2725, 26unitsubm 20387 . . . . 5 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
2821, 27ax-mp 5 . . . 4 (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))
29 df-ima 5697 . . . . 5 (𝑋𝑈) = ran (𝑋𝑈)
30 eqid 2736 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
311, 2, 3, 30, 5dchrf 27287 . . . . . . . . 9 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
3230, 14unitss 20377 . . . . . . . . . 10 𝑈 ⊆ (Base‘𝑍)
3332sseli 3978 . . . . . . . . 9 (𝑥𝑈𝑥 ∈ (Base‘𝑍))
34 ffvelcdm 7100 . . . . . . . . 9 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
3531, 33, 34syl2an 596 . . . . . . . 8 ((𝜑𝑥𝑈) → (𝑋𝑥) ∈ ℂ)
36 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝑈) → 𝑥𝑈)
375adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝑋𝐷)
3833adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝑥 ∈ (Base‘𝑍))
391, 2, 3, 30, 14, 37, 38dchrn0 27295 . . . . . . . . 9 ((𝜑𝑥𝑈) → ((𝑋𝑥) ≠ 0 ↔ 𝑥𝑈))
4036, 39mpbird 257 . . . . . . . 8 ((𝜑𝑥𝑈) → (𝑋𝑥) ≠ 0)
41 eldifsn 4785 . . . . . . . 8 ((𝑋𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝑋𝑥) ∈ ℂ ∧ (𝑋𝑥) ≠ 0))
4235, 40, 41sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝑈) → (𝑋𝑥) ∈ (ℂ ∖ {0}))
4342ralrimiva 3145 . . . . . 6 (𝜑 → ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0}))
4431ffund 6739 . . . . . . 7 (𝜑 → Fun 𝑋)
4531fdmd 6745 . . . . . . . 8 (𝜑 → dom 𝑋 = (Base‘𝑍))
4632, 45sseqtrrid 4026 . . . . . . 7 (𝜑𝑈 ⊆ dom 𝑋)
47 funimass4 6972 . . . . . . 7 ((Fun 𝑋𝑈 ⊆ dom 𝑋) → ((𝑋𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0})))
4844, 46, 47syl2anc 584 . . . . . 6 (𝜑 → ((𝑋𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0})))
4943, 48mpbird 257 . . . . 5 (𝜑 → (𝑋𝑈) ⊆ (ℂ ∖ {0}))
5029, 49eqsstrrid 4022 . . . 4 (𝜑 → ran (𝑋𝑈) ⊆ (ℂ ∖ {0}))
51 dchrghm.m . . . . 5 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
5251resmhm2b 18836 . . . 4 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑋𝑈) ⊆ (ℂ ∖ {0})) → ((𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋𝑈) ∈ (𝐻 MndHom 𝑀)))
5328, 50, 52sylancr 587 . . 3 (𝜑 → ((𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋𝑈) ∈ (𝐻 MndHom 𝑀)))
5420, 53mpbid 232 . 2 (𝜑 → (𝑋𝑈) ∈ (𝐻 MndHom 𝑀))
5514, 18unitgrp 20384 . . . 4 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
5613, 55syl 17 . . 3 (𝜑𝐻 ∈ Grp)
5751cnmgpabl 21447 . . . 4 𝑀 ∈ Abel
58 ablgrp 19804 . . . 4 (𝑀 ∈ Abel → 𝑀 ∈ Grp)
5957, 58ax-mp 5 . . 3 𝑀 ∈ Grp
60 ghmmhmb 19246 . . 3 ((𝐻 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀))
6156, 59, 60sylancl 586 . 2 (𝜑 → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀))
6254, 61eleqtrrd 2843 1 (𝜑 → (𝑋𝑈) ∈ (𝐻 GrpHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  cdif 3947  wss 3950  {csn 4625  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  Fun wfun 6554  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  cn 12267  0cn0 12528  Basecbs 17248  s cress 17275   MndHom cmhm 18795  SubMndcsubmnd 18796  Grpcgrp 18952   GrpHom cghm 19231  Abelcabl 19800  mulGrpcmgp 20138  Ringcrg 20231  CRingccrg 20232  Unitcui 20356  fldccnfld 21365  ℤ/nczn 21514  DChrcdchr 27277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17487  df-imas 17554  df-qus 17555  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-nsg 19143  df-eqg 19144  df-ghm 19232  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-subrng 20547  df-subrg 20571  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-2idl 21261  df-cnfld 21366  df-zring 21459  df-zn 21518  df-dchr 27278
This theorem is referenced by:  dchrabs  27305  sum2dchr  27319
  Copyright terms: Public domain W3C validator