![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrghm | Structured version Visualization version GIF version |
Description: A Dirichlet character restricted to the unit group of ℤ/nℤ is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
dchrghm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrghm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrghm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrghm.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrghm.h | ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
dchrghm.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
dchrghm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
dchrghm | ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrghm.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrghm.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchrghm.b | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
4 | 1, 2, 3 | dchrmhm 27303 | . . . . 5 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
5 | dchrghm.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
6 | 4, 5 | sselid 4006 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
7 | 1, 3 | dchrrcl 27302 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
9 | 8 | nnnn0d 12613 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
10 | 2 | zncrng 21586 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
12 | crngring 20272 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
14 | dchrghm.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑍) | |
15 | eqid 2740 | . . . . . 6 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
16 | 14, 15 | unitsubm 20412 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) |
17 | 13, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) |
18 | dchrghm.h | . . . . 5 ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) | |
19 | 18 | resmhm 18855 | . . . 4 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld))) |
20 | 6, 17, 19 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld))) |
21 | cnring 21426 | . . . . 5 ⊢ ℂfld ∈ Ring | |
22 | cnfldbas 21391 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
23 | cnfld0 21428 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
24 | cndrng 21434 | . . . . . . 7 ⊢ ℂfld ∈ DivRing | |
25 | 22, 23, 24 | drngui 20757 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
26 | eqid 2740 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
27 | 25, 26 | unitsubm 20412 | . . . . 5 ⊢ (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) |
28 | 21, 27 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) |
29 | df-ima 5713 | . . . . 5 ⊢ (𝑋 “ 𝑈) = ran (𝑋 ↾ 𝑈) | |
30 | eqid 2740 | . . . . . . . . . 10 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
31 | 1, 2, 3, 30, 5 | dchrf 27304 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
32 | 30, 14 | unitss 20402 | . . . . . . . . . 10 ⊢ 𝑈 ⊆ (Base‘𝑍) |
33 | 32 | sseli 4004 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑍)) |
34 | ffvelcdm 7115 | . . . . . . . . 9 ⊢ ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → (𝑋‘𝑥) ∈ ℂ) | |
35 | 31, 33, 34 | syl2an 595 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ∈ ℂ) |
36 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
37 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑋 ∈ 𝐷) |
38 | 33 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑍)) |
39 | 1, 2, 3, 30, 14, 37, 38 | dchrn0 27312 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ((𝑋‘𝑥) ≠ 0 ↔ 𝑥 ∈ 𝑈)) |
40 | 36, 39 | mpbird 257 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ≠ 0) |
41 | eldifsn 4811 | . . . . . . . 8 ⊢ ((𝑋‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝑋‘𝑥) ∈ ℂ ∧ (𝑋‘𝑥) ≠ 0)) | |
42 | 35, 40, 41 | sylanbrc 582 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ∈ (ℂ ∖ {0})) |
43 | 42 | ralrimiva 3152 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0})) |
44 | 31 | ffund 6751 | . . . . . . 7 ⊢ (𝜑 → Fun 𝑋) |
45 | 31 | fdmd 6757 | . . . . . . . 8 ⊢ (𝜑 → dom 𝑋 = (Base‘𝑍)) |
46 | 32, 45 | sseqtrrid 4062 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ dom 𝑋) |
47 | funimass4 6986 | . . . . . . 7 ⊢ ((Fun 𝑋 ∧ 𝑈 ⊆ dom 𝑋) → ((𝑋 “ 𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0}))) | |
48 | 44, 46, 47 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((𝑋 “ 𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0}))) |
49 | 43, 48 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝑋 “ 𝑈) ⊆ (ℂ ∖ {0})) |
50 | 29, 49 | eqsstrrid 4058 | . . . 4 ⊢ (𝜑 → ran (𝑋 ↾ 𝑈) ⊆ (ℂ ∖ {0})) |
51 | dchrghm.m | . . . . 5 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
52 | 51 | resmhm2b 18857 | . . . 4 ⊢ (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑋 ↾ 𝑈) ⊆ (ℂ ∖ {0})) → ((𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀))) |
53 | 28, 50, 52 | sylancr 586 | . . 3 ⊢ (𝜑 → ((𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀))) |
54 | 20, 53 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀)) |
55 | 14, 18 | unitgrp 20409 | . . . 4 ⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
56 | 13, 55 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Grp) |
57 | 51 | cnmgpabl 21469 | . . . 4 ⊢ 𝑀 ∈ Abel |
58 | ablgrp 19827 | . . . 4 ⊢ (𝑀 ∈ Abel → 𝑀 ∈ Grp) | |
59 | 57, 58 | ax-mp 5 | . . 3 ⊢ 𝑀 ∈ Grp |
60 | ghmmhmb 19267 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀)) | |
61 | 56, 59, 60 | sylancl 585 | . 2 ⊢ (𝜑 → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀)) |
62 | 54, 61 | eleqtrrd 2847 | 1 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 dom cdm 5700 ran crn 5701 ↾ cres 5702 “ cima 5703 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 ↾s cress 17287 MndHom cmhm 18816 SubMndcsubmnd 18817 Grpcgrp 18973 GrpHom cghm 19252 Abelcabl 19823 mulGrpcmgp 20161 Ringcrg 20260 CRingccrg 20261 Unitcui 20381 ℂfldccnfld 21387 ℤ/nℤczn 21536 DChrcdchr 27294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-subrng 20572 df-subrg 20597 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-2idl 21283 df-cnfld 21388 df-zring 21481 df-zn 21540 df-dchr 27295 |
This theorem is referenced by: dchrabs 27322 sum2dchr 27336 |
Copyright terms: Public domain | W3C validator |