MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrghm Structured version   Visualization version   GIF version

Theorem dchrghm 26091
Description: A Dirichlet character restricted to the unit group of ℤ/n is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
dchrghm.g 𝐺 = (DChr‘𝑁)
dchrghm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrghm.b 𝐷 = (Base‘𝐺)
dchrghm.u 𝑈 = (Unit‘𝑍)
dchrghm.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrghm.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
dchrghm.x (𝜑𝑋𝐷)
Assertion
Ref Expression
dchrghm (𝜑 → (𝑋𝑈) ∈ (𝐻 GrpHom 𝑀))

Proof of Theorem dchrghm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dchrghm.g . . . . . 6 𝐺 = (DChr‘𝑁)
2 dchrghm.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrghm.b . . . . . 6 𝐷 = (Base‘𝐺)
41, 2, 3dchrmhm 26076 . . . . 5 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
5 dchrghm.x . . . . 5 (𝜑𝑋𝐷)
64, 5sseldi 3885 . . . 4 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
71, 3dchrrcl 26075 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
85, 7syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
98nnnn0d 12115 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
102zncrng 20463 . . . . . . 7 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
119, 10syl 17 . . . . . 6 (𝜑𝑍 ∈ CRing)
12 crngring 19528 . . . . . 6 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ Ring)
14 dchrghm.u . . . . . 6 𝑈 = (Unit‘𝑍)
15 eqid 2736 . . . . . 6 (mulGrp‘𝑍) = (mulGrp‘𝑍)
1614, 15unitsubm 19642 . . . . 5 (𝑍 ∈ Ring → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍)))
1713, 16syl 17 . . . 4 (𝜑𝑈 ∈ (SubMnd‘(mulGrp‘𝑍)))
18 dchrghm.h . . . . 5 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
1918resmhm 18201 . . . 4 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) → (𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)))
206, 17, 19syl2anc 587 . . 3 (𝜑 → (𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)))
21 cnring 20339 . . . . 5 fld ∈ Ring
22 cnfldbas 20321 . . . . . . 7 ℂ = (Base‘ℂfld)
23 cnfld0 20341 . . . . . . 7 0 = (0g‘ℂfld)
24 cndrng 20346 . . . . . . 7 fld ∈ DivRing
2522, 23, 24drngui 19727 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
26 eqid 2736 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2725, 26unitsubm 19642 . . . . 5 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
2821, 27ax-mp 5 . . . 4 (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))
29 df-ima 5549 . . . . 5 (𝑋𝑈) = ran (𝑋𝑈)
30 eqid 2736 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
311, 2, 3, 30, 5dchrf 26077 . . . . . . . . 9 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
3230, 14unitss 19632 . . . . . . . . . 10 𝑈 ⊆ (Base‘𝑍)
3332sseli 3883 . . . . . . . . 9 (𝑥𝑈𝑥 ∈ (Base‘𝑍))
34 ffvelrn 6880 . . . . . . . . 9 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
3531, 33, 34syl2an 599 . . . . . . . 8 ((𝜑𝑥𝑈) → (𝑋𝑥) ∈ ℂ)
36 simpr 488 . . . . . . . . 9 ((𝜑𝑥𝑈) → 𝑥𝑈)
375adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝑋𝐷)
3833adantl 485 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝑥 ∈ (Base‘𝑍))
391, 2, 3, 30, 14, 37, 38dchrn0 26085 . . . . . . . . 9 ((𝜑𝑥𝑈) → ((𝑋𝑥) ≠ 0 ↔ 𝑥𝑈))
4036, 39mpbird 260 . . . . . . . 8 ((𝜑𝑥𝑈) → (𝑋𝑥) ≠ 0)
41 eldifsn 4686 . . . . . . . 8 ((𝑋𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝑋𝑥) ∈ ℂ ∧ (𝑋𝑥) ≠ 0))
4235, 40, 41sylanbrc 586 . . . . . . 7 ((𝜑𝑥𝑈) → (𝑋𝑥) ∈ (ℂ ∖ {0}))
4342ralrimiva 3095 . . . . . 6 (𝜑 → ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0}))
4431ffund 6527 . . . . . . 7 (𝜑 → Fun 𝑋)
4531fdmd 6534 . . . . . . . 8 (𝜑 → dom 𝑋 = (Base‘𝑍))
4632, 45sseqtrrid 3940 . . . . . . 7 (𝜑𝑈 ⊆ dom 𝑋)
47 funimass4 6755 . . . . . . 7 ((Fun 𝑋𝑈 ⊆ dom 𝑋) → ((𝑋𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0})))
4844, 46, 47syl2anc 587 . . . . . 6 (𝜑 → ((𝑋𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0})))
4943, 48mpbird 260 . . . . 5 (𝜑 → (𝑋𝑈) ⊆ (ℂ ∖ {0}))
5029, 49eqsstrrid 3936 . . . 4 (𝜑 → ran (𝑋𝑈) ⊆ (ℂ ∖ {0}))
51 dchrghm.m . . . . 5 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
5251resmhm2b 18203 . . . 4 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑋𝑈) ⊆ (ℂ ∖ {0})) → ((𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋𝑈) ∈ (𝐻 MndHom 𝑀)))
5328, 50, 52sylancr 590 . . 3 (𝜑 → ((𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋𝑈) ∈ (𝐻 MndHom 𝑀)))
5420, 53mpbid 235 . 2 (𝜑 → (𝑋𝑈) ∈ (𝐻 MndHom 𝑀))
5514, 18unitgrp 19639 . . . 4 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
5613, 55syl 17 . . 3 (𝜑𝐻 ∈ Grp)
5751cnmgpabl 20378 . . . 4 𝑀 ∈ Abel
58 ablgrp 19129 . . . 4 (𝑀 ∈ Abel → 𝑀 ∈ Grp)
5957, 58ax-mp 5 . . 3 𝑀 ∈ Grp
60 ghmmhmb 18587 . . 3 ((𝐻 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀))
6156, 59, 60sylancl 589 . 2 (𝜑 → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀))
6254, 61eleqtrrd 2834 1 (𝜑 → (𝑋𝑈) ∈ (𝐻 GrpHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  wral 3051  cdif 3850  wss 3853  {csn 4527  dom cdm 5536  ran crn 5537  cres 5538  cima 5539  Fun wfun 6352  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  0cc0 10694  cn 11795  0cn0 12055  Basecbs 16666  s cress 16667   MndHom cmhm 18170  SubMndcsubmnd 18171  Grpcgrp 18319   GrpHom cghm 18573  Abelcabl 19125  mulGrpcmgp 19458  Ringcrg 19516  CRingccrg 19517  Unitcui 19611  fldccnfld 20317  ℤ/nczn 20423  DChrcdchr 26067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-0g 16900  df-imas 16967  df-qus 16968  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-nsg 18495  df-eqg 18496  df-ghm 18574  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-dvr 19655  df-drng 19723  df-subrg 19752  df-lmod 19855  df-lss 19923  df-lsp 19963  df-sra 20163  df-rgmod 20164  df-lidl 20165  df-rsp 20166  df-2idl 20224  df-cnfld 20318  df-zring 20390  df-zn 20427  df-dchr 26068
This theorem is referenced by:  dchrabs  26095  sum2dchr  26109
  Copyright terms: Public domain W3C validator