| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrghm | Structured version Visualization version GIF version | ||
| Description: A Dirichlet character restricted to the unit group of ℤ/nℤ is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrghm.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrghm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrghm.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrghm.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchrghm.h | ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
| dchrghm.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| dchrghm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| dchrghm | ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrghm.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
| 2 | dchrghm.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 3 | dchrghm.b | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
| 4 | 1, 2, 3 | dchrmhm 27152 | . . . . 5 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
| 5 | dchrghm.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 6 | 4, 5 | sselid 3944 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
| 7 | 1, 3 | dchrrcl 27151 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | 8 | nnnn0d 12503 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 10 | 2 | zncrng 21454 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 12 | crngring 20154 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 14 | dchrghm.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑍) | |
| 15 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
| 16 | 14, 15 | unitsubm 20295 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) |
| 17 | 13, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) |
| 18 | dchrghm.h | . . . . 5 ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) | |
| 19 | 18 | resmhm 18747 | . . . 4 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld))) |
| 20 | 6, 17, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld))) |
| 21 | cnring 21302 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 22 | cnfldbas 21268 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 23 | cnfld0 21304 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
| 24 | cndrng 21310 | . . . . . . 7 ⊢ ℂfld ∈ DivRing | |
| 25 | 22, 23, 24 | drngui 20644 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
| 26 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 27 | 25, 26 | unitsubm 20295 | . . . . 5 ⊢ (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) |
| 28 | 21, 27 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) |
| 29 | df-ima 5651 | . . . . 5 ⊢ (𝑋 “ 𝑈) = ran (𝑋 ↾ 𝑈) | |
| 30 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 31 | 1, 2, 3, 30, 5 | dchrf 27153 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
| 32 | 30, 14 | unitss 20285 | . . . . . . . . . 10 ⊢ 𝑈 ⊆ (Base‘𝑍) |
| 33 | 32 | sseli 3942 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑍)) |
| 34 | ffvelcdm 7053 | . . . . . . . . 9 ⊢ ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → (𝑋‘𝑥) ∈ ℂ) | |
| 35 | 31, 33, 34 | syl2an 596 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ∈ ℂ) |
| 36 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
| 37 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑋 ∈ 𝐷) |
| 38 | 33 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑍)) |
| 39 | 1, 2, 3, 30, 14, 37, 38 | dchrn0 27161 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ((𝑋‘𝑥) ≠ 0 ↔ 𝑥 ∈ 𝑈)) |
| 40 | 36, 39 | mpbird 257 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ≠ 0) |
| 41 | eldifsn 4750 | . . . . . . . 8 ⊢ ((𝑋‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝑋‘𝑥) ∈ ℂ ∧ (𝑋‘𝑥) ≠ 0)) | |
| 42 | 35, 40, 41 | sylanbrc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ∈ (ℂ ∖ {0})) |
| 43 | 42 | ralrimiva 3125 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0})) |
| 44 | 31 | ffund 6692 | . . . . . . 7 ⊢ (𝜑 → Fun 𝑋) |
| 45 | 31 | fdmd 6698 | . . . . . . . 8 ⊢ (𝜑 → dom 𝑋 = (Base‘𝑍)) |
| 46 | 32, 45 | sseqtrrid 3990 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ dom 𝑋) |
| 47 | funimass4 6925 | . . . . . . 7 ⊢ ((Fun 𝑋 ∧ 𝑈 ⊆ dom 𝑋) → ((𝑋 “ 𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0}))) | |
| 48 | 44, 46, 47 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝑋 “ 𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0}))) |
| 49 | 43, 48 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝑋 “ 𝑈) ⊆ (ℂ ∖ {0})) |
| 50 | 29, 49 | eqsstrrid 3986 | . . . 4 ⊢ (𝜑 → ran (𝑋 ↾ 𝑈) ⊆ (ℂ ∖ {0})) |
| 51 | dchrghm.m | . . . . 5 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 52 | 51 | resmhm2b 18749 | . . . 4 ⊢ (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑋 ↾ 𝑈) ⊆ (ℂ ∖ {0})) → ((𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀))) |
| 53 | 28, 50, 52 | sylancr 587 | . . 3 ⊢ (𝜑 → ((𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀))) |
| 54 | 20, 53 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀)) |
| 55 | 14, 18 | unitgrp 20292 | . . . 4 ⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
| 56 | 13, 55 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Grp) |
| 57 | 51 | cnmgpabl 21345 | . . . 4 ⊢ 𝑀 ∈ Abel |
| 58 | ablgrp 19715 | . . . 4 ⊢ (𝑀 ∈ Abel → 𝑀 ∈ Grp) | |
| 59 | 57, 58 | ax-mp 5 | . . 3 ⊢ 𝑀 ∈ Grp |
| 60 | ghmmhmb 19159 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀)) | |
| 61 | 56, 59, 60 | sylancl 586 | . 2 ⊢ (𝜑 → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀)) |
| 62 | 54, 61 | eleqtrrd 2831 | 1 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 dom cdm 5638 ran crn 5639 ↾ cres 5640 “ cima 5641 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 ↾s cress 17200 MndHom cmhm 18708 SubMndcsubmnd 18709 Grpcgrp 18865 GrpHom cghm 19144 Abelcabl 19711 mulGrpcmgp 20049 Ringcrg 20142 CRingccrg 20143 Unitcui 20264 ℂfldccnfld 21264 ℤ/nℤczn 21412 DChrcdchr 27143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-nsg 19056 df-eqg 19057 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-subrng 20455 df-subrg 20479 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-cnfld 21265 df-zring 21357 df-zn 21416 df-dchr 27144 |
| This theorem is referenced by: dchrabs 27171 sum2dchr 27185 |
| Copyright terms: Public domain | W3C validator |