MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrghm Structured version   Visualization version   GIF version

Theorem dchrghm 27234
Description: A Dirichlet character restricted to the unit group of ℤ/n is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
dchrghm.g 𝐺 = (DChr‘𝑁)
dchrghm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrghm.b 𝐷 = (Base‘𝐺)
dchrghm.u 𝑈 = (Unit‘𝑍)
dchrghm.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrghm.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
dchrghm.x (𝜑𝑋𝐷)
Assertion
Ref Expression
dchrghm (𝜑 → (𝑋𝑈) ∈ (𝐻 GrpHom 𝑀))

Proof of Theorem dchrghm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dchrghm.g . . . . . 6 𝐺 = (DChr‘𝑁)
2 dchrghm.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrghm.b . . . . . 6 𝐷 = (Base‘𝐺)
41, 2, 3dchrmhm 27219 . . . . 5 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
5 dchrghm.x . . . . 5 (𝜑𝑋𝐷)
64, 5sselid 3974 . . . 4 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
71, 3dchrrcl 27218 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
85, 7syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
98nnnn0d 12565 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
102zncrng 21495 . . . . . . 7 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
119, 10syl 17 . . . . . 6 (𝜑𝑍 ∈ CRing)
12 crngring 20197 . . . . . 6 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ Ring)
14 dchrghm.u . . . . . 6 𝑈 = (Unit‘𝑍)
15 eqid 2725 . . . . . 6 (mulGrp‘𝑍) = (mulGrp‘𝑍)
1614, 15unitsubm 20337 . . . . 5 (𝑍 ∈ Ring → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍)))
1713, 16syl 17 . . . 4 (𝜑𝑈 ∈ (SubMnd‘(mulGrp‘𝑍)))
18 dchrghm.h . . . . 5 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
1918resmhm 18780 . . . 4 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) → (𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)))
206, 17, 19syl2anc 582 . . 3 (𝜑 → (𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)))
21 cnring 21335 . . . . 5 fld ∈ Ring
22 cnfldbas 21300 . . . . . . 7 ℂ = (Base‘ℂfld)
23 cnfld0 21337 . . . . . . 7 0 = (0g‘ℂfld)
24 cndrng 21343 . . . . . . 7 fld ∈ DivRing
2522, 23, 24drngui 20642 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
26 eqid 2725 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2725, 26unitsubm 20337 . . . . 5 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
2821, 27ax-mp 5 . . . 4 (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))
29 df-ima 5691 . . . . 5 (𝑋𝑈) = ran (𝑋𝑈)
30 eqid 2725 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
311, 2, 3, 30, 5dchrf 27220 . . . . . . . . 9 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
3230, 14unitss 20327 . . . . . . . . . 10 𝑈 ⊆ (Base‘𝑍)
3332sseli 3972 . . . . . . . . 9 (𝑥𝑈𝑥 ∈ (Base‘𝑍))
34 ffvelcdm 7090 . . . . . . . . 9 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
3531, 33, 34syl2an 594 . . . . . . . 8 ((𝜑𝑥𝑈) → (𝑋𝑥) ∈ ℂ)
36 simpr 483 . . . . . . . . 9 ((𝜑𝑥𝑈) → 𝑥𝑈)
375adantr 479 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝑋𝐷)
3833adantl 480 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝑥 ∈ (Base‘𝑍))
391, 2, 3, 30, 14, 37, 38dchrn0 27228 . . . . . . . . 9 ((𝜑𝑥𝑈) → ((𝑋𝑥) ≠ 0 ↔ 𝑥𝑈))
4036, 39mpbird 256 . . . . . . . 8 ((𝜑𝑥𝑈) → (𝑋𝑥) ≠ 0)
41 eldifsn 4792 . . . . . . . 8 ((𝑋𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝑋𝑥) ∈ ℂ ∧ (𝑋𝑥) ≠ 0))
4235, 40, 41sylanbrc 581 . . . . . . 7 ((𝜑𝑥𝑈) → (𝑋𝑥) ∈ (ℂ ∖ {0}))
4342ralrimiva 3135 . . . . . 6 (𝜑 → ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0}))
4431ffund 6727 . . . . . . 7 (𝜑 → Fun 𝑋)
4531fdmd 6733 . . . . . . . 8 (𝜑 → dom 𝑋 = (Base‘𝑍))
4632, 45sseqtrrid 4030 . . . . . . 7 (𝜑𝑈 ⊆ dom 𝑋)
47 funimass4 6962 . . . . . . 7 ((Fun 𝑋𝑈 ⊆ dom 𝑋) → ((𝑋𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0})))
4844, 46, 47syl2anc 582 . . . . . 6 (𝜑 → ((𝑋𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0})))
4943, 48mpbird 256 . . . . 5 (𝜑 → (𝑋𝑈) ⊆ (ℂ ∖ {0}))
5029, 49eqsstrrid 4026 . . . 4 (𝜑 → ran (𝑋𝑈) ⊆ (ℂ ∖ {0}))
51 dchrghm.m . . . . 5 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
5251resmhm2b 18782 . . . 4 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑋𝑈) ⊆ (ℂ ∖ {0})) → ((𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋𝑈) ∈ (𝐻 MndHom 𝑀)))
5328, 50, 52sylancr 585 . . 3 (𝜑 → ((𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋𝑈) ∈ (𝐻 MndHom 𝑀)))
5420, 53mpbid 231 . 2 (𝜑 → (𝑋𝑈) ∈ (𝐻 MndHom 𝑀))
5514, 18unitgrp 20334 . . . 4 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
5613, 55syl 17 . . 3 (𝜑𝐻 ∈ Grp)
5751cnmgpabl 21378 . . . 4 𝑀 ∈ Abel
58 ablgrp 19752 . . . 4 (𝑀 ∈ Abel → 𝑀 ∈ Grp)
5957, 58ax-mp 5 . . 3 𝑀 ∈ Grp
60 ghmmhmb 19190 . . 3 ((𝐻 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀))
6156, 59, 60sylancl 584 . 2 (𝜑 → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀))
6254, 61eleqtrrd 2828 1 (𝜑 → (𝑋𝑈) ∈ (𝐻 GrpHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929  wral 3050  cdif 3941  wss 3944  {csn 4630  dom cdm 5678  ran crn 5679  cres 5680  cima 5681  Fun wfun 6543  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  0cc0 11140  cn 12245  0cn0 12505  Basecbs 17183  s cress 17212   MndHom cmhm 18741  SubMndcsubmnd 18742  Grpcgrp 18898   GrpHom cghm 19175  Abelcabl 19748  mulGrpcmgp 20086  Ringcrg 20185  CRingccrg 20186  Unitcui 20306  fldccnfld 21296  ℤ/nczn 21445  DChrcdchr 27210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-0g 17426  df-imas 17493  df-qus 17494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-nsg 19087  df-eqg 19088  df-ghm 19176  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-subrng 20495  df-subrg 20520  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-2idl 21157  df-cnfld 21297  df-zring 21390  df-zn 21449  df-dchr 27211
This theorem is referenced by:  dchrabs  27238  sum2dchr  27252
  Copyright terms: Public domain W3C validator