MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubdrglem Structured version   Visualization version   GIF version

Theorem cnsubdrglem 20561
Description: Lemma for resubdrg 20725 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
cnsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnsubglem.2 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
cnsubglem.3 (𝑥𝐴 → -𝑥𝐴)
cnsubrglem.4 1 ∈ 𝐴
cnsubrglem.5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
cnsubrglem.6 ((𝑥𝐴𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴)
Assertion
Ref Expression
cnsubdrglem (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐴) ∈ DivRing)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnsubdrglem
StepHypRef Expression
1 cnsubglem.1 . . 3 (𝑥𝐴𝑥 ∈ ℂ)
2 cnsubglem.2 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
3 cnsubglem.3 . . 3 (𝑥𝐴 → -𝑥𝐴)
4 cnsubrglem.4 . . 3 1 ∈ 𝐴
5 cnsubrglem.5 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
61, 2, 3, 4, 5cnsubrglem 20560 . 2 𝐴 ∈ (SubRing‘ℂfld)
7 cndrng 20539 . . . 4 fld ∈ DivRing
8 eqid 2738 . . . . 5 (ℂflds 𝐴) = (ℂflds 𝐴)
9 cnfld0 20534 . . . . 5 0 = (0g‘ℂfld)
10 eqid 2738 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
118, 9, 10issubdrg 19964 . . . 4 ((ℂfld ∈ DivRing ∧ 𝐴 ∈ (SubRing‘ℂfld)) → ((ℂflds 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴))
127, 6, 11mp2an 688 . . 3 ((ℂflds 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴)
13 cnring 20532 . . . . 5 fld ∈ Ring
141ssriv 3921 . . . . . . 7 𝐴 ⊆ ℂ
15 ssdif 4070 . . . . . . 7 (𝐴 ⊆ ℂ → (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0}))
1614, 15ax-mp 5 . . . . . 6 (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0})
1716sseli 3913 . . . . 5 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0}))
18 cnfldbas 20514 . . . . . 6 ℂ = (Base‘ℂfld)
1918, 9, 7drngui 19912 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
20 cnflddiv 20540 . . . . . 6 / = (/r‘ℂfld)
21 cnfld1 20535 . . . . . 6 1 = (1r‘ℂfld)
2218, 19, 20, 21, 10ringinvdv 19851 . . . . 5 ((ℂfld ∈ Ring ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
2313, 17, 22sylancr 586 . . . 4 (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
24 eldifsn 4717 . . . . 5 (𝑥 ∈ (𝐴 ∖ {0}) ↔ (𝑥𝐴𝑥 ≠ 0))
25 cnsubrglem.6 . . . . 5 ((𝑥𝐴𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴)
2624, 25sylbi 216 . . . 4 (𝑥 ∈ (𝐴 ∖ {0}) → (1 / 𝑥) ∈ 𝐴)
2723, 26eqeltrd 2839 . . 3 (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
2812, 27mprgbir 3078 . 2 (ℂflds 𝐴) ∈ DivRing
296, 28pm3.2i 470 1 (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐴) ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  -cneg 11136   / cdiv 11562  s cress 16867  Ringcrg 19698  invrcinvr 19828  DivRingcdr 19906  SubRingcsubrg 19935  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-subrg 19937  df-cnfld 20511
This theorem is referenced by:  qsubdrg  20562  resubdrg  20725
  Copyright terms: Public domain W3C validator