![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnsubdrglem | Structured version Visualization version GIF version |
Description: Lemma for resubdrg 21547 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
cnsubglem.3 | ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) |
cnsubrglem.4 | ⊢ 1 ∈ 𝐴 |
cnsubrglem.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
cnsubrglem.6 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) |
Ref | Expression |
---|---|
cnsubdrglem | ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
2 | cnsubglem.2 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
3 | cnsubglem.3 | . . 3 ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) | |
4 | cnsubrglem.4 | . . 3 ⊢ 1 ∈ 𝐴 | |
5 | cnsubrglem.5 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) | |
6 | 1, 2, 3, 4, 5 | cnsubrglem 21356 | . 2 ⊢ 𝐴 ∈ (SubRing‘ℂfld) |
7 | cndrng 21333 | . . . 4 ⊢ ℂfld ∈ DivRing | |
8 | eqid 2728 | . . . . 5 ⊢ (ℂfld ↾s 𝐴) = (ℂfld ↾s 𝐴) | |
9 | cnfld0 21327 | . . . . 5 ⊢ 0 = (0g‘ℂfld) | |
10 | eqid 2728 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
11 | 8, 9, 10 | issubdrg 20675 | . . . 4 ⊢ ((ℂfld ∈ DivRing ∧ 𝐴 ∈ (SubRing‘ℂfld)) → ((ℂfld ↾s 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴)) |
12 | 7, 6, 11 | mp2an 690 | . . 3 ⊢ ((ℂfld ↾s 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
13 | cnring 21325 | . . . . 5 ⊢ ℂfld ∈ Ring | |
14 | 1 | ssriv 3986 | . . . . . . 7 ⊢ 𝐴 ⊆ ℂ |
15 | ssdif 4140 | . . . . . . 7 ⊢ (𝐴 ⊆ ℂ → (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0})) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0}) |
17 | 16 | sseli 3978 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0})) |
18 | cnfldbas 21290 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
19 | 18, 9, 7 | drngui 20637 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
20 | cnflddiv 21335 | . . . . . 6 ⊢ / = (/r‘ℂfld) | |
21 | cnfld1 21328 | . . . . . 6 ⊢ 1 = (1r‘ℂfld) | |
22 | 18, 19, 20, 21, 10 | ringinvdv 20360 | . . . . 5 ⊢ ((ℂfld ∈ Ring ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
23 | 13, 17, 22 | sylancr 585 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
24 | eldifsn 4795 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0)) | |
25 | cnsubrglem.6 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) | |
26 | 24, 25 | sylbi 216 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → (1 / 𝑥) ∈ 𝐴) |
27 | 23, 26 | eqeltrd 2829 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
28 | 12, 27 | mprgbir 3065 | . 2 ⊢ (ℂfld ↾s 𝐴) ∈ DivRing |
29 | 6, 28 | pm3.2i 469 | 1 ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∀wral 3058 ∖ cdif 3946 ⊆ wss 3949 {csn 4632 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 0cc0 11146 1c1 11147 + caddc 11149 · cmul 11151 -cneg 11483 / cdiv 11909 ↾s cress 17216 Ringcrg 20180 invrcinvr 20333 SubRingcsubrg 20513 DivRingcdr 20631 ℂfldccnfld 21286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-addf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-tpos 8238 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 df-subg 19085 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-cring 20183 df-oppr 20280 df-dvdsr 20303 df-unit 20304 df-invr 20334 df-dvr 20347 df-subrng 20490 df-subrg 20515 df-drng 20633 df-cnfld 21287 |
This theorem is referenced by: qsubdrg 21359 resubdrg 21547 |
Copyright terms: Public domain | W3C validator |