MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubdrglem Structured version   Visualization version   GIF version

Theorem cnsubdrglem 20649
Description: Lemma for resubdrg 20813 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
cnsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnsubglem.2 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
cnsubglem.3 (𝑥𝐴 → -𝑥𝐴)
cnsubrglem.4 1 ∈ 𝐴
cnsubrglem.5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
cnsubrglem.6 ((𝑥𝐴𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴)
Assertion
Ref Expression
cnsubdrglem (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐴) ∈ DivRing)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnsubdrglem
StepHypRef Expression
1 cnsubglem.1 . . 3 (𝑥𝐴𝑥 ∈ ℂ)
2 cnsubglem.2 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
3 cnsubglem.3 . . 3 (𝑥𝐴 → -𝑥𝐴)
4 cnsubrglem.4 . . 3 1 ∈ 𝐴
5 cnsubrglem.5 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
61, 2, 3, 4, 5cnsubrglem 20648 . 2 𝐴 ∈ (SubRing‘ℂfld)
7 cndrng 20627 . . . 4 fld ∈ DivRing
8 eqid 2738 . . . . 5 (ℂflds 𝐴) = (ℂflds 𝐴)
9 cnfld0 20622 . . . . 5 0 = (0g‘ℂfld)
10 eqid 2738 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
118, 9, 10issubdrg 20049 . . . 4 ((ℂfld ∈ DivRing ∧ 𝐴 ∈ (SubRing‘ℂfld)) → ((ℂflds 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴))
127, 6, 11mp2an 689 . . 3 ((ℂflds 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴)
13 cnring 20620 . . . . 5 fld ∈ Ring
141ssriv 3925 . . . . . . 7 𝐴 ⊆ ℂ
15 ssdif 4074 . . . . . . 7 (𝐴 ⊆ ℂ → (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0}))
1614, 15ax-mp 5 . . . . . 6 (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0})
1716sseli 3917 . . . . 5 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0}))
18 cnfldbas 20601 . . . . . 6 ℂ = (Base‘ℂfld)
1918, 9, 7drngui 19997 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
20 cnflddiv 20628 . . . . . 6 / = (/r‘ℂfld)
21 cnfld1 20623 . . . . . 6 1 = (1r‘ℂfld)
2218, 19, 20, 21, 10ringinvdv 19936 . . . . 5 ((ℂfld ∈ Ring ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
2313, 17, 22sylancr 587 . . . 4 (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
24 eldifsn 4720 . . . . 5 (𝑥 ∈ (𝐴 ∖ {0}) ↔ (𝑥𝐴𝑥 ≠ 0))
25 cnsubrglem.6 . . . . 5 ((𝑥𝐴𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴)
2624, 25sylbi 216 . . . 4 (𝑥 ∈ (𝐴 ∖ {0}) → (1 / 𝑥) ∈ 𝐴)
2723, 26eqeltrd 2839 . . 3 (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
2812, 27mprgbir 3079 . 2 (ℂflds 𝐴) ∈ DivRing
296, 28pm3.2i 471 1 (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐴) ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cdif 3884  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  -cneg 11206   / cdiv 11632  s cress 16941  Ringcrg 19783  invrcinvr 19913  DivRingcdr 19991  SubRingcsubrg 20020  fldccnfld 20597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-subrg 20022  df-cnfld 20598
This theorem is referenced by:  qsubdrg  20650  resubdrg  20813
  Copyright terms: Public domain W3C validator