| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnsubdrglem | Structured version Visualization version GIF version | ||
| Description: Lemma for resubdrg 21524 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
| cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
| cnsubglem.3 | ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) |
| cnsubrglem.4 | ⊢ 1 ∈ 𝐴 |
| cnsubrglem.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
| cnsubrglem.6 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnsubdrglem | ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
| 2 | cnsubglem.2 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
| 3 | cnsubglem.3 | . . 3 ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) | |
| 4 | cnsubrglem.4 | . . 3 ⊢ 1 ∈ 𝐴 | |
| 5 | cnsubrglem.5 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | cnsubrglem 21340 | . 2 ⊢ 𝐴 ∈ (SubRing‘ℂfld) |
| 7 | cndrng 21317 | . . . 4 ⊢ ℂfld ∈ DivRing | |
| 8 | eqid 2730 | . . . . 5 ⊢ (ℂfld ↾s 𝐴) = (ℂfld ↾s 𝐴) | |
| 9 | cnfld0 21311 | . . . . 5 ⊢ 0 = (0g‘ℂfld) | |
| 10 | eqid 2730 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 11 | 8, 9, 10 | issubdrg 20696 | . . . 4 ⊢ ((ℂfld ∈ DivRing ∧ 𝐴 ∈ (SubRing‘ℂfld)) → ((ℂfld ↾s 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴)) |
| 12 | 7, 6, 11 | mp2an 692 | . . 3 ⊢ ((ℂfld ↾s 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
| 13 | cnring 21309 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 14 | 1 | ssriv 3953 | . . . . . . 7 ⊢ 𝐴 ⊆ ℂ |
| 15 | ssdif 4110 | . . . . . . 7 ⊢ (𝐴 ⊆ ℂ → (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0})) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0}) |
| 17 | 16 | sseli 3945 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0})) |
| 18 | cnfldbas 21275 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 19 | 18, 9, 7 | drngui 20651 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
| 20 | cnflddiv 21319 | . . . . . 6 ⊢ / = (/r‘ℂfld) | |
| 21 | cnfld1 21312 | . . . . . 6 ⊢ 1 = (1r‘ℂfld) | |
| 22 | 18, 19, 20, 21, 10 | ringinvdv 20330 | . . . . 5 ⊢ ((ℂfld ∈ Ring ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
| 23 | 13, 17, 22 | sylancr 587 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
| 24 | eldifsn 4753 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0)) | |
| 25 | cnsubrglem.6 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) | |
| 26 | 24, 25 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → (1 / 𝑥) ∈ 𝐴) |
| 27 | 23, 26 | eqeltrd 2829 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
| 28 | 12, 27 | mprgbir 3052 | . 2 ⊢ (ℂfld ↾s 𝐴) ∈ DivRing |
| 29 | 6, 28 | pm3.2i 470 | 1 ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 -cneg 11413 / cdiv 11842 ↾s cress 17207 Ringcrg 20149 invrcinvr 20303 SubRingcsubrg 20485 DivRingcdr 20645 ℂfldccnfld 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-subrng 20462 df-subrg 20486 df-drng 20647 df-cnfld 21272 |
| This theorem is referenced by: qsubdrg 21343 resubdrg 21524 |
| Copyright terms: Public domain | W3C validator |