| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnsubdrglem | Structured version Visualization version GIF version | ||
| Description: Lemma for resubdrg 21550 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
| cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
| cnsubglem.3 | ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) |
| cnsubrglem.4 | ⊢ 1 ∈ 𝐴 |
| cnsubrglem.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
| cnsubrglem.6 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnsubdrglem | ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
| 2 | cnsubglem.2 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
| 3 | cnsubglem.3 | . . 3 ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) | |
| 4 | cnsubrglem.4 | . . 3 ⊢ 1 ∈ 𝐴 | |
| 5 | cnsubrglem.5 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | cnsubrglem 21358 | . 2 ⊢ 𝐴 ∈ (SubRing‘ℂfld) |
| 7 | cndrng 21340 | . . . 4 ⊢ ℂfld ∈ DivRing | |
| 8 | eqid 2729 | . . . . 5 ⊢ (ℂfld ↾s 𝐴) = (ℂfld ↾s 𝐴) | |
| 9 | cnfld0 21334 | . . . . 5 ⊢ 0 = (0g‘ℂfld) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 11 | 8, 9, 10 | issubdrg 20700 | . . . 4 ⊢ ((ℂfld ∈ DivRing ∧ 𝐴 ∈ (SubRing‘ℂfld)) → ((ℂfld ↾s 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴)) |
| 12 | 7, 6, 11 | mp2an 692 | . . 3 ⊢ ((ℂfld ↾s 𝐴) ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ {0})((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
| 13 | cnring 21332 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 14 | 1 | ssriv 3947 | . . . . . . 7 ⊢ 𝐴 ⊆ ℂ |
| 15 | ssdif 4103 | . . . . . . 7 ⊢ (𝐴 ⊆ ℂ → (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0})) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ (𝐴 ∖ {0}) ⊆ (ℂ ∖ {0}) |
| 17 | 16 | sseli 3939 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0})) |
| 18 | cnfldbas 21300 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 19 | 18, 9, 7 | drngui 20655 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
| 20 | cnflddiv 21342 | . . . . . 6 ⊢ / = (/r‘ℂfld) | |
| 21 | cnfld1 21335 | . . . . . 6 ⊢ 1 = (1r‘ℂfld) | |
| 22 | 18, 19, 20, 21, 10 | ringinvdv 20334 | . . . . 5 ⊢ ((ℂfld ∈ Ring ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
| 23 | 13, 17, 22 | sylancr 587 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
| 24 | eldifsn 4746 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0)) | |
| 25 | cnsubrglem.6 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) | |
| 26 | 24, 25 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → (1 / 𝑥) ∈ 𝐴) |
| 27 | 23, 26 | eqeltrd 2828 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {0}) → ((invr‘ℂfld)‘𝑥) ∈ 𝐴) |
| 28 | 12, 27 | mprgbir 3051 | . 2 ⊢ (ℂfld ↾s 𝐴) ∈ DivRing |
| 29 | 6, 28 | pm3.2i 470 | 1 ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 -cneg 11382 / cdiv 11811 ↾s cress 17176 Ringcrg 20153 invrcinvr 20307 SubRingcsubrg 20489 DivRingcdr 20649 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-subg 19037 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-subrng 20466 df-subrg 20490 df-drng 20651 df-cnfld 21297 |
| This theorem is referenced by: qsubdrg 21361 resubdrg 21550 |
| Copyright terms: Public domain | W3C validator |