![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnsubdrglem | Structured version Visualization version GIF version |
Description: Lemma for resubdrg 21381 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
cnsubglem.1 | β’ (π₯ β π΄ β π₯ β β) |
cnsubglem.2 | β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯ + π¦) β π΄) |
cnsubglem.3 | β’ (π₯ β π΄ β -π₯ β π΄) |
cnsubrglem.4 | β’ 1 β π΄ |
cnsubrglem.5 | β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯ Β· π¦) β π΄) |
cnsubrglem.6 | β’ ((π₯ β π΄ β§ π₯ β 0) β (1 / π₯) β π΄) |
Ref | Expression |
---|---|
cnsubdrglem | β’ (π΄ β (SubRingββfld) β§ (βfld βΎs π΄) β DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsubglem.1 | . . 3 β’ (π₯ β π΄ β π₯ β β) | |
2 | cnsubglem.2 | . . 3 β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯ + π¦) β π΄) | |
3 | cnsubglem.3 | . . 3 β’ (π₯ β π΄ β -π₯ β π΄) | |
4 | cnsubrglem.4 | . . 3 β’ 1 β π΄ | |
5 | cnsubrglem.5 | . . 3 β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯ Β· π¦) β π΄) | |
6 | 1, 2, 3, 4, 5 | cnsubrglem 21196 | . 2 β’ π΄ β (SubRingββfld) |
7 | cndrng 21175 | . . . 4 β’ βfld β DivRing | |
8 | eqid 2731 | . . . . 5 β’ (βfld βΎs π΄) = (βfld βΎs π΄) | |
9 | cnfld0 21170 | . . . . 5 β’ 0 = (0gββfld) | |
10 | eqid 2731 | . . . . 5 β’ (invrββfld) = (invrββfld) | |
11 | 8, 9, 10 | issubdrg 20545 | . . . 4 β’ ((βfld β DivRing β§ π΄ β (SubRingββfld)) β ((βfld βΎs π΄) β DivRing β βπ₯ β (π΄ β {0})((invrββfld)βπ₯) β π΄)) |
12 | 7, 6, 11 | mp2an 689 | . . 3 β’ ((βfld βΎs π΄) β DivRing β βπ₯ β (π΄ β {0})((invrββfld)βπ₯) β π΄) |
13 | cnring 21168 | . . . . 5 β’ βfld β Ring | |
14 | 1 | ssriv 3986 | . . . . . . 7 β’ π΄ β β |
15 | ssdif 4139 | . . . . . . 7 β’ (π΄ β β β (π΄ β {0}) β (β β {0})) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 β’ (π΄ β {0}) β (β β {0}) |
17 | 16 | sseli 3978 | . . . . 5 β’ (π₯ β (π΄ β {0}) β π₯ β (β β {0})) |
18 | cnfldbas 21149 | . . . . . 6 β’ β = (Baseββfld) | |
19 | 18, 9, 7 | drngui 20507 | . . . . . 6 β’ (β β {0}) = (Unitββfld) |
20 | cnflddiv 21176 | . . . . . 6 β’ / = (/rββfld) | |
21 | cnfld1 21171 | . . . . . 6 β’ 1 = (1rββfld) | |
22 | 18, 19, 20, 21, 10 | ringinvdv 20306 | . . . . 5 β’ ((βfld β Ring β§ π₯ β (β β {0})) β ((invrββfld)βπ₯) = (1 / π₯)) |
23 | 13, 17, 22 | sylancr 586 | . . . 4 β’ (π₯ β (π΄ β {0}) β ((invrββfld)βπ₯) = (1 / π₯)) |
24 | eldifsn 4790 | . . . . 5 β’ (π₯ β (π΄ β {0}) β (π₯ β π΄ β§ π₯ β 0)) | |
25 | cnsubrglem.6 | . . . . 5 β’ ((π₯ β π΄ β§ π₯ β 0) β (1 / π₯) β π΄) | |
26 | 24, 25 | sylbi 216 | . . . 4 β’ (π₯ β (π΄ β {0}) β (1 / π₯) β π΄) |
27 | 23, 26 | eqeltrd 2832 | . . 3 β’ (π₯ β (π΄ β {0}) β ((invrββfld)βπ₯) β π΄) |
28 | 12, 27 | mprgbir 3067 | . 2 β’ (βfld βΎs π΄) β DivRing |
29 | 6, 28 | pm3.2i 470 | 1 β’ (π΄ β (SubRingββfld) β§ (βfld βΎs π΄) β DivRing) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 βwral 3060 β cdif 3945 β wss 3948 {csn 4628 βcfv 6543 (class class class)co 7412 βcc 11112 0cc0 11114 1c1 11115 + caddc 11117 Β· cmul 11119 -cneg 11450 / cdiv 11876 βΎs cress 17178 Ringcrg 20128 invrcinvr 20279 SubRingcsubrg 20458 DivRingcdr 20501 βfldccnfld 21145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-subrng 20435 df-subrg 20460 df-drng 20503 df-cnfld 21146 |
This theorem is referenced by: qsubdrg 21198 resubdrg 21381 |
Copyright terms: Public domain | W3C validator |