![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopspN | Structured version Visualization version GIF version |
Description: Scalar product of DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhopsp.s | ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))⟩) |
Ref | Expression |
---|---|
dvhopspN | ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆⟨𝐹, 𝑈⟩) = ⟨(𝑅‘𝐹), (𝑅 ∘ 𝑈)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5706 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸)) | |
2 | dvhopsp.s | . . . 4 ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))⟩) | |
3 | 2 | dvhvscaval 40483 | . . 3 ⊢ ((𝑅 ∈ 𝐸 ∧ ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸)) → (𝑅𝑆⟨𝐹, 𝑈⟩) = ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩) |
4 | 1, 3 | sylan2 592 | . 2 ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆⟨𝐹, 𝑈⟩) = ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩) |
5 | op1stg 7986 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹) | |
6 | 5 | fveq2d 6889 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (𝑅‘(1st ‘⟨𝐹, 𝑈⟩)) = (𝑅‘𝐹)) |
7 | op2ndg 7987 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (2nd ‘⟨𝐹, 𝑈⟩) = 𝑈) | |
8 | 7 | coeq2d 5856 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩)) = (𝑅 ∘ 𝑈)) |
9 | 6, 8 | opeq12d 4876 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩ = ⟨(𝑅‘𝐹), (𝑅 ∘ 𝑈)⟩) |
10 | 9 | adantl 481 | . 2 ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩ = ⟨(𝑅‘𝐹), (𝑅 ∘ 𝑈)⟩) |
11 | 4, 10 | eqtrd 2766 | 1 ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆⟨𝐹, 𝑈⟩) = ⟨(𝑅‘𝐹), (𝑅 ∘ 𝑈)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 × cxp 5667 ∘ ccom 5673 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7972 2nd c2nd 7973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: dvhopN 40500 |
Copyright terms: Public domain | W3C validator |