| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopspN | Structured version Visualization version GIF version | ||
| Description: Scalar product of DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvhopsp.s | ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
| Ref | Expression |
|---|---|
| dvhopspN | ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆〈𝐹, 𝑈〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑈)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5678 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → 〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸)) | |
| 2 | dvhopsp.s | . . . 4 ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
| 3 | 2 | dvhvscaval 41100 | . . 3 ⊢ ((𝑅 ∈ 𝐸 ∧ 〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸)) → (𝑅𝑆〈𝐹, 𝑈〉) = 〈(𝑅‘(1st ‘〈𝐹, 𝑈〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑈〉))〉) |
| 4 | 1, 3 | sylan2 593 | . 2 ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆〈𝐹, 𝑈〉) = 〈(𝑅‘(1st ‘〈𝐹, 𝑈〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑈〉))〉) |
| 5 | op1stg 7983 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (1st ‘〈𝐹, 𝑈〉) = 𝐹) | |
| 6 | 5 | fveq2d 6865 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (𝑅‘(1st ‘〈𝐹, 𝑈〉)) = (𝑅‘𝐹)) |
| 7 | op2ndg 7984 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑈〉) = 𝑈) | |
| 8 | 7 | coeq2d 5829 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (𝑅 ∘ (2nd ‘〈𝐹, 𝑈〉)) = (𝑅 ∘ 𝑈)) |
| 9 | 6, 8 | opeq12d 4848 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → 〈(𝑅‘(1st ‘〈𝐹, 𝑈〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑈〉))〉 = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑈)〉) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈(𝑅‘(1st ‘〈𝐹, 𝑈〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑈〉))〉 = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑈)〉) |
| 11 | 4, 10 | eqtrd 2765 | 1 ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆〈𝐹, 𝑈〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑈)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: dvhopN 41117 |
| Copyright terms: Public domain | W3C validator |