![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopspN | Structured version Visualization version GIF version |
Description: Scalar product of DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhopsp.s | ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))⟩) |
Ref | Expression |
---|---|
dvhopspN | ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆⟨𝐹, 𝑈⟩) = ⟨(𝑅‘𝐹), (𝑅 ∘ 𝑈)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5719 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸)) | |
2 | dvhopsp.s | . . . 4 ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))⟩) | |
3 | 2 | dvhvscaval 40612 | . . 3 ⊢ ((𝑅 ∈ 𝐸 ∧ ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸)) → (𝑅𝑆⟨𝐹, 𝑈⟩) = ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩) |
4 | 1, 3 | sylan2 591 | . 2 ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆⟨𝐹, 𝑈⟩) = ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩) |
5 | op1stg 8013 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹) | |
6 | 5 | fveq2d 6906 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (𝑅‘(1st ‘⟨𝐹, 𝑈⟩)) = (𝑅‘𝐹)) |
7 | op2ndg 8014 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (2nd ‘⟨𝐹, 𝑈⟩) = 𝑈) | |
8 | 7 | coeq2d 5869 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩)) = (𝑅 ∘ 𝑈)) |
9 | 6, 8 | opeq12d 4886 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩ = ⟨(𝑅‘𝐹), (𝑅 ∘ 𝑈)⟩) |
10 | 9 | adantl 480 | . 2 ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩ = ⟨(𝑅‘𝐹), (𝑅 ∘ 𝑈)⟩) |
11 | 4, 10 | eqtrd 2768 | 1 ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆⟨𝐹, 𝑈⟩) = ⟨(𝑅‘𝐹), (𝑅 ∘ 𝑈)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⟨cop 4638 × cxp 5680 ∘ ccom 5686 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 1st c1st 7999 2nd c2nd 8000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8001 df-2nd 8002 |
This theorem is referenced by: dvhopN 40629 |
Copyright terms: Public domain | W3C validator |