Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopspN Structured version   Visualization version   GIF version

Theorem dvhopspN 39056
Description: Scalar product of DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
dvhopsp.s 𝑆 = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
Assertion
Ref Expression
dvhopspN ((𝑅𝐸 ∧ (𝐹𝑇𝑈𝐸)) → (𝑅𝑆𝐹, 𝑈⟩) = ⟨(𝑅𝐹), (𝑅𝑈)⟩)
Distinct variable groups:   𝑓,𝑠,𝐸   𝑇,𝑓,𝑠
Allowed substitution hints:   𝑅(𝑓,𝑠)   𝑆(𝑓,𝑠)   𝑈(𝑓,𝑠)   𝐹(𝑓,𝑠)

Proof of Theorem dvhopspN
StepHypRef Expression
1 opelxpi 5617 . . 3 ((𝐹𝑇𝑈𝐸) → ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸))
2 dvhopsp.s . . . 4 𝑆 = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
32dvhvscaval 39040 . . 3 ((𝑅𝐸 ∧ ⟨𝐹, 𝑈⟩ ∈ (𝑇 × 𝐸)) → (𝑅𝑆𝐹, 𝑈⟩) = ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩)
41, 3sylan2 592 . 2 ((𝑅𝐸 ∧ (𝐹𝑇𝑈𝐸)) → (𝑅𝑆𝐹, 𝑈⟩) = ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩)
5 op1stg 7816 . . . . 5 ((𝐹𝑇𝑈𝐸) → (1st ‘⟨𝐹, 𝑈⟩) = 𝐹)
65fveq2d 6760 . . . 4 ((𝐹𝑇𝑈𝐸) → (𝑅‘(1st ‘⟨𝐹, 𝑈⟩)) = (𝑅𝐹))
7 op2ndg 7817 . . . . 5 ((𝐹𝑇𝑈𝐸) → (2nd ‘⟨𝐹, 𝑈⟩) = 𝑈)
87coeq2d 5760 . . . 4 ((𝐹𝑇𝑈𝐸) → (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩)) = (𝑅𝑈))
96, 8opeq12d 4809 . . 3 ((𝐹𝑇𝑈𝐸) → ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩ = ⟨(𝑅𝐹), (𝑅𝑈)⟩)
109adantl 481 . 2 ((𝑅𝐸 ∧ (𝐹𝑇𝑈𝐸)) → ⟨(𝑅‘(1st ‘⟨𝐹, 𝑈⟩)), (𝑅 ∘ (2nd ‘⟨𝐹, 𝑈⟩))⟩ = ⟨(𝑅𝐹), (𝑅𝑈)⟩)
114, 10eqtrd 2778 1 ((𝑅𝐸 ∧ (𝐹𝑇𝑈𝐸)) → (𝑅𝑆𝐹, 𝑈⟩) = ⟨(𝑅𝐹), (𝑅𝑈)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4564   × cxp 5578  ccom 5584  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805
This theorem is referenced by:  dvhopN  39057
  Copyright terms: Public domain W3C validator